The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman
Annales de l'Institut Fourier, Volume 46 (1996) no. 4, p. 1083-1094
We give a short proof of the extension theorem of Ohsawa-Takegoshi. The same method also gives a generalization of the ¯-theorem of Donnelly and Fefferman for the case of (n,1)-forms.
On donne une démonstration simple du théorème d’extension d’Ohsawa-Takegoshi. La même méthode donne une généralisation du théorème ¯ de Donnelly et Fefferman pour les formes de bidegré (n,1).
@article{AIF_1996__46_4_1083_0,
     author = {Berndtsson, Bo},
     title = {The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {4},
     year = {1996},
     pages = {1083-1094},
     doi = {10.5802/aif.1541},
     zbl = {0853.32024},
     mrnumber = {97k:32019},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1996__46_4_1083_0}
}
Berndtsson, Bo. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Annales de l'Institut Fourier, Volume 46 (1996) no. 4, pp. 1083-1094. doi : 10.5802/aif.1541. http://www.numdam.org/item/AIF_1996__46_4_1083_0/

[A] E. Amar, Extension de fonctions holomorphes et courants, Bull. Sciences Mathématiques, 2ème série, 107 (1983), 25-48. | MR 85c:32025 | Zbl 0543.32007

[Be1] B. Berndtsson, Weighted estimates for ∂ in domains in ℂ, Duke Math J., 66 (1992), 239-255. | MR 93f:32018 | Zbl 0774.35048

[Be2] B. Berndtsson, Some recent results on estimates for the ∂-equation, in Contributions to Complex Analysis and Analytic Geometry, Eds. H. Skoda and J-M Trepreau, Vieweg, 1994. | MR 96a:32035 | Zbl 0823.32007

[Be3] B. Berndtsson, Uniform estimates with weights for the ∂-equation, preprint 1994, to appear in J. Geom. Anal. | Zbl 0923.32014

[DH] K. Diederich and G Herbort, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | MR 93h:32016 | Zbl 0759.32002

[DOh] K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Annals of Math., 141 (1995), 181-190. | MR 95j:32039 | Zbl 0828.32002

[H] L. Hörmander, L2-estimates and existence theorems for the ∂-equation, Acta Math., 113 (1965). | Zbl 0158.11002

[KF] J. J. Kohn and G. Folland, The Neumann problem for the Cauchy-Riemann complex. | Zbl 0247.35093

[M] L. Manivel, Un théorème de prolongement L2 pour des sections holomorphes d'un fibré hermitien, Math. Z., 212 (1993), 107-122. | MR 94e:32050 | Zbl 0789.32015

[McN] J. Mcneal, On large values of L2-holomorphic functions, Math. Res. Letters, 3 (1996), 247-260. | MR 97e:32004 | Zbl 0865.32009

[OhT] T. Ohsawa and K. Takegoshi, On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. | MR 88g:32029 | Zbl 0625.32011

[S] Y-T Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, preprint 1995. | Zbl 0941.32021

[S2] Y-T Siu, Complex-Analyticity at harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), 55-138. | MR 83j:58039 | Zbl 0497.32025