Idempotents in quotients and restrictions of Banach algebras of functions
Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1095-1124.

Soit ${𝒜}_{\beta }$ l’algèbre de Beurling à poids $\left(1+|n|{\right)}^{\beta }$ sur le cercle unité $𝕋$ et, pour un ensemble fermé $E\subseteq 𝕋$, soit ${J}_{{𝒜}_{\beta }}\left(E\right)=\left\{f\in {𝒜}_{\beta }:f=0\phantom{\rule{0.166667em}{0ex}}\text{au}\phantom{\rule{4pt}{0ex}}\text{voisinage}\phantom{\rule{4pt}{0ex}}\text{de}\phantom{\rule{0.166667em}{0ex}}E\right\}$. Nous montrons que, pour $\beta >\frac{1}{2}$, il existe un ensemble fermé $E\subseteq 𝕋$ de mesure nulle tel que l’algèbre quotient ${𝒜}_{\beta }/\overline{{J}_{{𝒜}_{\beta }}\left(E\right)}$ n’est pas engendrée par ses idempotents, contrastant par là avec un résultat de Zouakia. De plus, pour les algèbres de Lipschitz ${\lambda }_{\gamma }$ et l’algèbre $𝒜𝒞$ des fonctions absolument continues sur $𝕋$, nous caractérisons les ensembles fermés $E\subseteq 𝕋$ tels que les algèbres restrictions ${\lambda }_{\gamma }\left(E\right)$ et $𝒜𝒞\left(E\right)$ soient engendrées par leurs idempotents.

Let ${𝒜}_{\beta }$ be the Beurling algebra with weight $\left(1+|n|{\right)}^{\beta }$ on the unit circle $𝕋$ and, for a closed set $E\subseteq 𝕋$, let ${J}_{{𝒜}_{\beta }}\left(E\right)=\left\{f\in {𝒜}_{\beta }:f=0\phantom{\rule{0.166667em}{0ex}}\text{on}\phantom{\rule{4pt}{0ex}}\text{a}\phantom{\rule{4pt}{0ex}}\text{neighbourhood}\phantom{\rule{4pt}{0ex}}\text{of}\phantom{\rule{0.166667em}{0ex}}E\right\}$. We prove that, for $\beta >\frac{1}{2}$, there exists a closed set $E\subseteq 𝕋$ of measure zero such that the quotient algebra ${𝒜}_{\beta }/\overline{{J}_{{𝒜}_{\beta }}\left(E\right)}$ is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras ${\lambda }_{\gamma }$ and the algebra $𝒜𝒞$ of absolutely continuous functions on $𝕋$, we characterize the closed sets $E\subseteq 𝕋$ for which the restriction algebras ${\lambda }_{\gamma }\left(E\right)$ and $𝒜𝒞\left(E\right)$ are generated by their idempotents.

@article{AIF_1996__46_4_1095_0,
author = {Pedersen, Thomas Vils},
title = {Idempotents in quotients and restrictions of Banach algebras of functions},
journal = {Annales de l'Institut Fourier},
pages = {1095--1124},
publisher = {Association des Annales de l'institut Fourier},
volume = {46},
number = {4},
year = {1996},
doi = {10.5802/aif.1542},
zbl = {0853.46047},
mrnumber = {98b:46070},
language = {en},
url = {archive.numdam.org/item/AIF_1996__46_4_1095_0/}
}
Pedersen, Thomas Vils. Idempotents in quotients and restrictions of Banach algebras of functions. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1095-1124. doi : 10.5802/aif.1542. http://archive.numdam.org/item/AIF_1996__46_4_1095_0/

[1] W.G. Bade and H.G. Dales, The Wedderburn Decomposition of Some Commutative Banach Algebras, J. Funct. Anal., 107 (1992), 105-121. | MR 93d:46090 | Zbl 0765.46036

[2] J.J. Benedetto, Spectral Synthesis, Academic Press, New York-London-San Francisco, 1975. | Zbl 0364.43001

[3] F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | Zbl 0271.46039

[4] I.M. Gelfand, D.A. Raikov and G.E. Shilov, Commutative Normed Rings, Chelsea Publishing Company, Bronx, New York, 1964.

[5] L.I. Hedberg, The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat., 8 (1969), 63-72. | MR 41 #5973 | Zbl 0193.10302

[6] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. | Zbl 0137.03202

[7] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR 43 #801 | Zbl 0195.07602

[8] J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. | MR 28 #3279 | Zbl 0112.29304

[9] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons, New York, 1968. | MR 40 #1734 | Zbl 0169.17902

[10] P. Malliavin, Impossibilité de la synthèse spectrale sur les groupes abeliens non compacts, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 85-92. | Numdam | MR 21 #5854c | Zbl 0101.09403

[11] H. Mirkil, The Work of Silov on Commutative Semi-simple Banach Algebras, volume 20 of Notas de Matemática. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1959. | MR 33 #3130 | Zbl 0090.09301

[12] H. Mirkil, Continuous translation of Hölder and Lipschitz functions, Can. J. Math., 12 (1960), 674-685. | MR 23 #A1993 | Zbl 0097.09702

[13] T.V. Pedersen, Banach Algebras of Functions on the Circle and the Disc, Ph. D. Dissertation, University of Cambridge, October 1994.

[14] C.E. Rickart, General Theory of Banach Algebras, D. Van Nostrand Company, Princeton, N.J., 1960. | MR 22 #5903 | Zbl 0095.09702

[15] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973. | MR 51 #1315 | Zbl 0253.46001

[16] D.R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272. | MR 28 #4385 | Zbl 0121.10204

[17] G.E. Shilov, Homogeneous rings of functions, Amer. Math. Soc. Transl., 92, 1953, Reprinted in Amer. Math. Soc. Transl. (1), 8 (1962), 392-455. | Zbl 0053.08401

[18] F. Zouakia, Idéaux fermés de A+ et L1(ℝ+) et propriétés asymptotiques des contractions et des semigroupes contractants, Thèse pour le grade de Docteur d'Etat des Sciences, Université de Bordeaux I, 1990.

[19] A. Zygmund, Trigonometric Series, volume 1, Cambridge University Press, second edition, 1959. | Zbl 0085.05601