Necessary and sufficient conditions for matrix summability methods to be stronger than multisummability
Annales de l'Institut Fourier, Volume 46 (1996) no. 5, p. 1349-1357

For general matrix summability methods, we find necessary and sufficient conditions for such methods to be stronger than multisummability. In a second part we show the existence of power series which are not multisummable but can be summed by a matrix method satisfying the conditions mentioned above

Pour les méthodes matricielles générales de sommabilité nous donnons des conditions nécessaires et suffisantes qui rendent les méthodes plus puissantes que la multisommabilité. Dans une deuxième partie nous montrons l’existence d’une série entière qui n’est pas multisommable mais sommable par une méthode matricielle satisfaisant aux conditions indiquées dans la première partie

@article{AIF_1996__46_5_1349_0,
     author = {Balser, Werner and Beck, Andreas},
     title = {Necessary and sufficient conditions for matrix summability methods to be stronger than multisummability},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {5},
     year = {1996},
     pages = {1349-1357},
     doi = {10.5802/aif.1552},
     zbl = {0864.34003},
     mrnumber = {98e:40004},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1996__46_5_1349_0}
}
Balser, Werner; Beck, Andreas. Necessary and sufficient conditions for matrix summability methods to be stronger than multisummability. Annales de l'Institut Fourier, Volume 46 (1996) no. 5, pp. 1349-1357. doi : 10.5802/aif.1552. http://www.numdam.org/item/AIF_1996__46_5_1349_0/

[1] W. Balser, From Divergent Power Series to Analytic Functions, Lecture Notes in Mathematics 1582, Springer-Verlag, 1994. | MR 96d:34071 | Zbl 0810.34046

[2] A. Beck, Matrix-Summationsverfahren und Multisummierbarkeit, Dissertation, Ulm, 1995. | Zbl 0848.40004

[3] G.H. Hardy, Note on a divergent series, Proc. Cambridge Phil. Soc., (1941), 1-8. | JFM 67.0200.02 | MR 2,278a | Zbl 0027.10101

[4] G.H. Hardy, Divergent Series, Oxford, 1956.

[5] W.B. Jurkat, Summability of asymptotic power series, Asympt. Anal., 7 (1993), 239-250. | MR 95d:40016 | Zbl 0802.30002

[6] B. Malgrange, Sommation des séries divergentes, Expo. Math., 13 (1995), 163-222. | MR 96i:34125 | Zbl 0836.40004