The Bergman kernel of the minimal ball and applications
Annales de l'Institut Fourier, Volume 47 (1997) no. 3, p. 915-928

In this note we compute the Bergman kernel of the unit ball with respect to the smallest norm in n that extends the euclidean norm in n and give some applications.

Dans cette note on calcule le noyau de Bergman de la boule unité associé à la plus petite norme sur n qui prolonge la norme euclidienne sur n et nous donnons quelques applications.

@article{AIF_1997__47_3_915_0,
     author = {Oeljeklaus, Karl and Pflug, Peter and Youssfi, El Hassan},
     title = {The Bergman kernel of the minimal ball and applications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {47},
     number = {3},
     year = {1997},
     pages = {915-928},
     doi = {10.5802/aif.1585},
     zbl = {0873.32025},
     mrnumber = {98d:32028},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1997__47_3_915_0}
}
Oeljeklaus, Karl; Pflug, Peter; Youssfi, El Hassan. The Bergman kernel of the minimal ball and applications. Annales de l'Institut Fourier, Volume 47 (1997) no. 3, pp. 915-928. doi : 10.5802/aif.1585. http://www.numdam.org/item/AIF_1997__47_3_915_0/

[Bel] S. Bell, Proper holomorphic mappings between circular domains, Comment. Math. Helv., 57 (1982), 532-538. | MR 84m:32032 | Zbl 0511.32013

[Ber] F. Berteloot, Attraction des disques analytiques et hölderienne d'applications holomorphes propres, Banach Center Publications, 31 (1995), 91-98. | MR 96k:32054 | Zbl 0831.32012

[DF] K. Diederich and J.E. Fornaess, Pseudoconvex Domains : Bounded Strictly Plurisubharmonic Exhaustion Functions, Inventiones Math., 39 (1977), 129-141. | Zbl 0353.32025

[FH] W. Fulton & J. Harris, Representation theory, Graduate Texts in Math., Springer-Verlag, 1991. | MR 93a:20069 | Zbl 0744.22001

[HP] K.T. Hahn & P. Pflug, On a minimal complex norm that extends the euclidean norm, Monatsh. Math., 105 (1988), 107-112. | MR 89a:32031 | Zbl 0638.32005

[JP] M. Jarnicki & P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. | MR 94k:32039 | Zbl 0789.32001

[Ki] K.T. Kim, Automorphism groups of certain domains in Cn with singular boundary, Pacific J. Math., 151 (1991), 54-64. | MR 92j:32117 | Zbl 0698.32016

[Le] J.J. Loeb, Les noyaux de Bergman et Szegö pour des domaines strictement pseudo-convexes généralisent la boule, Publicationes Math., 36 (1992), 65-72. | MR 93g:32034 | Zbl 0765.32014

[OY] K. Oeljeklaus & E.H. Youssfi, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal., to appear. | Zbl 0942.32019

[Pi1] S. Pinchuk, Scaling method and holomorphic mappings, Proc. Symposia in Pure Math., Part 1, 52 (1991). | MR 92i:32031 | Zbl 0744.32013

[Pi2] S. Pinchuk, On proper holomorphic mappings on strictly pseudoconvex domains, Sib. Math. J., 15 (1974). | Zbl 0303.32016

[Th] A. Thomas, Uniform extendability of the Bergman kernel, Illinois J. Math., 39 (1995), 598-605. | MR 96i:32025 | Zbl 0849.32016