On invariant domains in certain complex homogeneous spaces
Annales de l'Institut Fourier, Volume 47 (1997) no. 4, p. 1101-1115

Given a compact connected Lie group K. For a relatively compact K-invariant domain D in a Stein K -homogeneous space, we prove that the automorphism group of D is compact and if K is semisimple, a proper holomorphic self mapping of D is biholomorphic.

Soit K un groupe de Lie connexe compact. Pour un domaine K, G-invariant et relativement compact dans un espace homogène de Stein K /L , nous montrons que le groupe des automorphismes de D est compact et si K est semi-simple, une application holomorphe propre de D est biholomorphe.

@article{AIF_1997__47_4_1101_0,
     author = {Zhou, Xiang-Yu},
     title = {On invariant domains in certain complex homogeneous spaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {47},
     number = {4},
     year = {1997},
     pages = {1101-1115},
     doi = {10.5802/aif.1593},
     zbl = {0881.32015},
     mrnumber = {99a:32045},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1997__47_4_1101_0}
}
Zhou, Xiang-Yu. On invariant domains in certain complex homogeneous spaces. Annales de l'Institut Fourier, Volume 47 (1997) no. 4, pp. 1101-1115. doi : 10.5802/aif.1593. http://www.numdam.org/item/AIF_1997__47_4_1101_0/

[1] A. Andreotti, T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717. | MR 31 #1685 | Zbl 0115.38405

[2] H. Azad, J.-J. Loeb, Plurisubharmonic functions and the Kempf-Ness theorem, Bull. London Math. Soc., 25 (1993), 162-168. | MR 93m:32044 | Zbl 0795.32002

[3] E. Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. | MR 85b:32041 | Zbl 0534.32009

[4] E. Bedford, On the automorphism group of a Stein manifold, Math. Ann., 266 (1983), 215-227. | MR 85h:32049 | Zbl 0532.32014

[5] A. Borel, Symmetric compact complex spaces, Arch. Math., 33 (1979), 49-56. | MR 80k:32033 | Zbl 0423.32015

[6] R. Bott, L. Tu, Differential forms in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982. | MR 83i:57016 | Zbl 0496.55001

[7] G. Fels, L. Geatti, Invariant domains in complex symmetric spaces, J. reine angew. Math., 454 (1994), 97-118. | MR 95g:32052 | Zbl 0803.32019

[8] F. Forstnerič, Proper holomorphic mappings. A survey, in Proceedings of the special year on several complex variables at Mittag-Leffler Institute, E. Fornaess ed., Princeton University Press, Princeton, 1993. | MR 94a:32042 | Zbl 0778.32008

[9] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | MR 20 #4661 | Zbl 0081.07401

[10] W. Greub, S. Halperin, R. Vanstone, Connections, curvature, and cohomology, Academic Press, New York, London, 1972. | MR 336650 | Zbl 0322.58001

[11] P. Heinzner, Geometric invariant theory on Stein space, Math. Ann., 289 (1991), 631-662. | MR 1103041 | MR 92j:32116 | Zbl 0728.32010

[12] P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France., 121 (1993), 445-463. | Numdam | MR 1242639 | MR 94i:32050 | Zbl 0794.32022

[13] P. Heinzner, A. Huckleberry, Invariant plurisubharmonic exhaustions and retractions, Manu. Math., 83 (1994), 19-29. | MR 1265915 | MR 95a:32055 | Zbl 0842.32010

[14] P. Heinzner, F. Kutzschebauch, An equivariant version of Grauert's Oka principle, Invent. Math., 119 (1995), 317-346. | MR 1312503 | MR 96c:32034 | Zbl 0837.32004

[15] M. Hirsch, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin, 1976. | MR 448362 | MR 56 #6669 | Zbl 0356.57001

[16] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966. | MR 34 #2573 | Zbl 0138.42001

[17] L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1966. | Zbl 0138.06203

[18] D. Husemoller, Fibre bundles, McGraw-Hill, New York et al., 1966. | MR 229247 | MR 37 #4821 | Zbl 0144.44804

[19] L. Kaup, B. Kaup, Holomorphic functions of several variables, Walter de Gruyter, Berlin, New York, 1983. | MR 716497 | Zbl 0528.32001

[20] S. Kobayashi, Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | MR 414940 | Zbl 0346.32031

[21] H. Kraft, Geomtrische Methoden in der Invariantentheri, Braunschweig-Wiesbaden, Vieweg, 1985. | MR 768181 | Zbl 0669.14003

[22] M. Lassalle, Séries de Laurent des functions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., 11 (1978), 167-210. | Numdam | MR 510548 | MR 80f:22006 | Zbl 0452.43011

[23] W. Massey, A basic course in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1991. | MR 1095046 | MR 92c:55001 | Zbl 0725.55001

[24] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. | MR 100267 | MR 20 #6700 | Zbl 0084.39002

[25] N. Mok, Rigiditity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann., 266 (1984), 433-447. | MR 735526 | MR 85f:32044 | Zbl 0574.32021

[26] R. Narasimhan, On the homology group of Stein spaces, Invent. Math., 2 (1967), 377-385. | MR 216525 | MR 35 #7356 | Zbl 0148.32202

[27] R. Narasimhan, Several complex variables, University of Chicago, Chicago, 1971. | MR 342725 | MR 49 #7470 | Zbl 0223.32001

[28] A.L. Onishchik, Topology of transitive transformation groups, Fizmatlit Publishing Company, Moscow, 1994 (Russian). | MR 1379333 | MR 95e:57058 | Zbl 0796.57001

[29] S. Pinchuk, On proper holomorphic mappings of strictly psedoconvex domains, Siberian Math. J., 15 (1974), 909-917 (Russian). | MR 355109 | Zbl 0303.32016

[30] R. Remmert, K. Stein, Eigentlische holomorphe Abbildungen, Math. Z., 73 (1960), 159-189. | MR 124528 | MR 23 #A1840 | Zbl 0102.06903

[31] N. Steenrod, Topology of fibre bundles, Princeton University Press, Princeton, 1951. | MR 39258 | MR 12,522b | Zbl 0054.07103

[32] V. Varadarajan, Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. | MR 746308 | Zbl 0955.22500

[33] J. Wolf, Spaces of constant curvature, Publish or Perish, Boston, 1974. | MR 343214 | MR 49 #7958 | Zbl 0281.53034

[34] X.Y. Zhou, On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izvestija RAN., Ser. Math., 58 (1994), 196-205. | MR 1275909 | Zbl 0835.32006