SL 2 , the cubic and the quartic
Annales de l'Institut Fourier, Volume 48 (1998) no. 1, p. 29-71

We describe the branching rule from Sp 4 to SL 2 , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.

On donne une description de la restriction des modules de Sp 4 à SL 2 , où SL 2 est considéré comme sous-groupe par l’action sur les formes binaires cubiques. On obtient une formule numérique pour les multiplicités, et un ensemble minimal de générateurs pour la réalisation géométrique naturelle de cette formule.

@article{AIF_1998__48_1_29_0,
     author = {Papageorgiou, Yannis Y.},
     title = {$SL\_2$, the cubic and the quartic},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {48},
     number = {1},
     year = {1998},
     pages = {29-71},
     doi = {10.5802/aif.1610},
     zbl = {0901.20030},
     mrnumber = {99f:20071},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1998__48_1_29_0}
}
Papageorgiou, Yannis Y. $SL_2$, the cubic and the quartic. Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 29-71. doi : 10.5802/aif.1610. http://www.numdam.org/item/AIF_1998__48_1_29_0/

[Br] M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Scient. Éc. Norm. Sup., 4e série, 18 (1985), 345-387. | Numdam | MR 87e:14043 | Zbl 0588.22010

[G] P. Gordan, Die simultanen Systeme binärer Formen, Math. Ann., 2 (1870), 227-280. | JFM 02.0059.01

[GI] P. Gordan, Vorlesungen über Invarianten Theorie, reprinted by Chelsea Publishing Co., New York, 1987.

[Gu] S. Gundelfinger, Zur Theorie des simultanen Systems einer cubischen und einer biquadratischen binären Form, J.B. Metzler, Stuttgart, 1869. | JFM 02.0065.02

[H-Per] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions, and beyond, Isr. Math. Conf. Proc., 8 (1995), 1-182. | MR 96e:13006 | Zbl 0844.20027

[H-Rem] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313 (1989), 539-570. | MR 90h:22015a | Zbl 0674.15021

[HU] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. | Zbl 0733.20019

[Hum] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1972. | MR 48 #2197 | Zbl 0254.17004

[KKLV] F. Knop et Al., Algebraic Transformation Groups and Invariant Theory (H. Kraft et al., eds), Birkhäuser Basel Boston Berlin, 1989, 63-76. | Zbl 0682.00008

[KT] K. Koike and I. Terada, Young-Diagrammatic Methods for the Representation Theory of the Classical Groups of type Bn, Cn and Dn, J. Alg., 107 (1987), 466-511. | MR 88i:22035 | Zbl 0622.20033

[K] B. Kostant, A formula for the Multiplicity of a Weight, Trans. Amer. Math. Soc., 93 (1959), 53-73. | MR 22 #80 | Zbl 0131.27201

[LP1] P. Littelmann, A Generalization of the Littlewood-Richardson Rule, J. Alg., 130 (1990), 328-368. | MR 91f:22023 | Zbl 0704.20033

[LP2] P. Littelmann, A Littlewood-Richardson Rule for Symmetrizable Kac-Moody Algebras, Invent. Math., 116 (1994), 329-346. | MR 95f:17023 | Zbl 0805.17019

[LDE] D.E. Littlewood, On Invariants under Restricted Groups, Philos. Trans. Roy. Soc. A, 239 (1944), 387-417. | MR 7,6e | Zbl 0060.04403

[M] F. Meyer, Bericht über den gegenwärtigen Stand der Invariantentheorie, Jahresbericht der DMV, Band 1 (1892), 79-292. | JFM 24.0045.01

[S] G. Salmon, Lessons Introductory to the Higher Modern Algebra, Hodges, Figgis, and Co., 1885.

[Sch] G. Schwarz, On classical invariant theory and binary cubics, Ann. Inst. Fourier, 37-3 (1987), 191-216. | Numdam | MR 89h:14036 | Zbl 0597.14011

[Sp] T.A. Springer, Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR 56 #5740 | Zbl 0346.20020