A primary Hopf surface is a compact complex surface with universal cover and cyclic fundamental group generated by the transformation , , and such that and . Being diffeomorphic with Hopf surfaces cannot admit any Kähler metric. However, it was known that for and they admit a locally conformally Kähler metric with parallel Lee form. We here provide the construction of a locally conformally Kähler metric with parallel Lee form for all primary Hopf surfaces of class (). We also show that these metrics are obtained via a Riemannian suspension over , by deforming the canonical Sasakian structure of by a Hermitian quadratic form of . We finally infer the existence of a locally conformally Kähler metric for all primary Hopf surfaces by a deformation argument due to C. LeBrun.
Une surface de Hopf primaire est une surface complexe compacte dont le revêtement universel est et dont le groupe fondamental est le groupe cyclique engendré par une transformation , , pour tels que et . Les surfaces de Hopf primaires sont difféomorphes à et n’admettent donc aucune métrique kählérienne. En revanche, il est bien connu qu’elles admettent des métriques localement conformément kählériennes, à forme de Lee parallèle, dans le cas où et . Nous construisons ici une métrique localement conformément kählérienne, à forme de Lee parallèle, sur toute surface de Hopf primaire de la classe (). Nous montrons aussi que ces métriques sont obtenues, via une suspension riemannienne au-dessus de , en déformant la structure sasakienne canonique de par une forme quadratique hermitienne de . Finalement, nous déduisons l’existence de métriques localement conformément kählériennes sur toute surface de Hopf primaire à l’aide d’un argument de déformation dû à C. LeBrun.
@article{AIF_1998__48_4_1107_0, author = {Gauduchon, Paul and Ornea, Liviu}, title = {Locally conformally {K\"ahler} metrics on {Hopf} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1107--1127}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {4}, year = {1998}, doi = {10.5802/aif.1651}, mrnumber = {2000g:53088}, zbl = {0917.53025}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1651/} }
TY - JOUR AU - Gauduchon, Paul AU - Ornea, Liviu TI - Locally conformally Kähler metrics on Hopf surfaces JO - Annales de l'Institut Fourier PY - 1998 SP - 1107 EP - 1127 VL - 48 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1651/ DO - 10.5802/aif.1651 LA - en ID - AIF_1998__48_4_1107_0 ER -
%0 Journal Article %A Gauduchon, Paul %A Ornea, Liviu %T Locally conformally Kähler metrics on Hopf surfaces %J Annales de l'Institut Fourier %D 1998 %P 1107-1127 %V 48 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1651/ %R 10.5802/aif.1651 %G en %F AIF_1998__48_4_1107_0
Gauduchon, Paul; Ornea, Liviu. Locally conformally Kähler metrics on Hopf surfaces. Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1107-1127. doi : 10.5802/aif.1651. http://archive.numdam.org/articles/10.5802/aif.1651/
[1] The Riemannian Goldberg-Sachs Theorem, Int. J. Math., 8 (1997), 421-439. | MR | Zbl
, ,[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band, 4, Springer-Verlag, 1984. | Zbl
, , ,[3] Complex surfaces admitting no metric with parallel Lee form, preprint.
,[4] Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976. | MR | Zbl
,[5] Examples of four dimensional locally conformal Kähler manifolds, Geometriae Dedicata, 29 (1989), 227-233. | MR | Zbl
, , , ,[6] Compact locally conformal Kähler nilmanifolds, Geometriae Dedicata, 21 (1986), 187-192. | MR | Zbl
, , ,[7] Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser (1998). | MR | Zbl
, ,[8] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. | MR | Zbl
,[9] Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. Reine Angew. Math., 469 (1995), 1-50. | MR | Zbl
,[10] Géométrie des surfaces K3: modules et périodes. Séminaire Palaiseau, octobre 1981-janvier 1982, Astérisque, 126 (1985). | Numdam | Zbl
[11] An intrinsic characterisation of Kähler manifolds, Inv. Math., 74 (1983), 139-150. | Zbl
, , Jr,[12] Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963. | MR | Zbl
, ,[13] On the structure of compact complex analytic surfaces, II, American J. Math., 88 (1966), 682-722. | MR | Zbl
,[14] Complex structures on S1 ȕ S3, Proc. Nat. Acad. Sci. USA, 55 (1966), 240-243. | MR | Zbl
,[15] On deformations of complex analytic structures, III, stability theorems for complex structures, Ann. of Math., 71 (1960), 43-77. | MR | Zbl
, ,[16] Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), 528-542. | MR | Zbl
,[17] Private letter to the first named author, September 22, 1992.
,[18] A kind of even dimensional differential geometry and its application to exterior calculus, American J. Math., 65 (1943), 433-438. | MR | Zbl
,[19] Attempts of writing metrics on primary Hopf surfaces, private communication, October 1991.
,[20] Every K3 surface is Kähler, Inv. Math., 73 (1983), 139-150. | MR | Zbl
,[21] The standard CR structure on the unit tangent bundle, Tohoku Math. J., 44 (1992), 535-543. | MR | Zbl
,[22] Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino, 40 (1982), 81-92. | MR | Zbl
,[23] Some curvature properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 259 (1980), 439-447. | MR | Zbl
,[24] On locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. | MR | Zbl
,[25] Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), 231-255. | MR | Zbl
,[26] Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 45, 3 (1987), 117-123. | MR | Zbl
,Cited by Sources: