Bicubic planar maps
Annales de l'Institut Fourier, Volume 49 (1999) no. 3, p. 1095-1102

A numerical function of bicubic planar maps found by the author and colleagues is a special case of a polynomial due to François Jaeger.

Une fonction numérique des cartes planaires bicubiques trouvée par l’auteur et des collègues est un cas spécial d’un polynôme de François Jaeger.

@article{AIF_1999__49_3_1095_0,
     author = {Tutte, William T.},
     title = {Bicubic planar maps},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {49},
     number = {3},
     year = {1999},
     pages = {1095-1102},
     doi = {10.5802/aif.1708},
     zbl = {0923.05019},
     mrnumber = {2001d:05160},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1999__49_3_1095_0}
}
Tutte, William T. Bicubic planar maps. Annales de l'Institut Fourier, Volume 49 (1999) no. 3, pp. 1095-1102. doi : 10.5802/aif.1708. http://www.numdam.org/item/AIF_1999__49_3_1095_0/

[1] R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte, The dissection of rectangles into squares, Duke Math. J., 7 (1940), 312-340. | JFM 66.0181.01 | MR 2,153d | Zbl 0024.16501

[2] R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte, Leaky electricity and triangulated triangles, Philips Research Reports, 30 (1975), 205-219.

[3] F. Jaeger, A new invariant of plane bipartite cubic graphs, Discrete Maths., 101 (1992), 149-164. | MR 94e:05090 | Zbl 0767.05043

[4] N. Robertson, D. Sanders, P. Seymour and R. Thomas, The four colour Theorem, J. Comb. Theory B, 70 (1997), 2-44. | MR 98c:05065 | Zbl 0883.05056

[5] P.G. Tait, Note on a theorem in geometry of position, Trans. Royal Soc. Edinburgh, 29 (1880), 657-660. | JFM 12.0409.01

[6] W.T. Tutte, On Hamiltonian Circuits, J. London Math. Soc., 21 (1946), 98-101. | MR 8,397d | Zbl 0061.41306

[7] W.T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc. Cambbridge Phil. Soc., 44 (1948), 463-482. | MR 10,319c | Zbl 0030.40903

[8] W.T. Tutte, On chromatic polynomials and the golden ratio, J. Comb. Theory, 9 (1970), 289-296. | MR 42 #7557 | Zbl 0209.55001

[9] W.T. Tutte, Graph theory as I have known it, Chapter 4, Oxford University Press, 1998. | Zbl 0915.05041