Curvature flows of maximal integral triangulations
Annales de l'Institut Fourier, Volume 49 (1999) no. 4, p. 1115-1128

This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.

Ce papier décrit les configurations locales de certaines triangulations du plan. Ces triangulations admettent une “courbure” discrète pour laquelle on a localement une formule de type Gauss-Bonnet

@article{AIF_1999__49_4_1115_0,
     author = {Bacher, Roland},
     title = {Curvature flows of maximal integral triangulations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     pages = {1115-1128},
     doi = {10.5802/aif.1710},
     zbl = {0947.05017},
     mrnumber = {2000h:52016},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1999__49_4_1115_0}
}
Bacher, Roland. Curvature flows of maximal integral triangulations. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1115-1128. doi : 10.5802/aif.1710. http://www.numdam.org/item/AIF_1999__49_4_1115_0/

[A] M. Aigner, Combinatorial Theory, Springer, 1979. | MR 80h:05002 | Zbl 0415.05001

[C] H.S.M. Coxeter, An introduction to geometry, Wiley, 1989.

[DC] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. | MR 52 #15253 | Zbl 0326.53001