Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
Étant donné une variété algébrique réelle compacte non singulière, on étudie les classes de cohomologie algébrique données par les cycles algébriques, algébriquement équivalents à zéro.
@article{AIF_1999__49_6_1797_0, author = {Ab\'anades, Miguel and Kucharz, Wojciech}, title = {Algebraic equivalence of real algebraic cycles}, journal = {Annales de l'Institut Fourier}, pages = {1797--1804}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {6}, year = {1999}, doi = {10.5802/aif.1738}, mrnumber = {2001a:14061}, zbl = {0932.14033}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1738/} }
TY - JOUR AU - Abánades, Miguel AU - Kucharz, Wojciech TI - Algebraic equivalence of real algebraic cycles JO - Annales de l'Institut Fourier PY - 1999 SP - 1797 EP - 1804 VL - 49 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1738/ DO - 10.5802/aif.1738 LA - en ID - AIF_1999__49_6_1797_0 ER -
%0 Journal Article %A Abánades, Miguel %A Kucharz, Wojciech %T Algebraic equivalence of real algebraic cycles %J Annales de l'Institut Fourier %D 1999 %P 1797-1804 %V 49 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1738/ %R 10.5802/aif.1738 %G en %F AIF_1999__49_6_1797_0
Abánades, Miguel; Kucharz, Wojciech. Algebraic equivalence of real algebraic cycles. Annales de l'Institut Fourier, Volume 49 (1999) no. 6, pp. 1797-1804. doi : 10.5802/aif.1738. http://archive.numdam.org/articles/10.5802/aif.1738/
[1] Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. | MR | Zbl
and ,[2] Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. | MR | Zbl
and ,[3] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. | MR | Zbl
and ,[4] Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. | MR | Zbl
and ,[5] La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. | Numdam | MR | Zbl
et ,[6] Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. | MR | Zbl
,[7] Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. | MR | Zbl
,[8] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. | MR | Zbl
,[9] Homotopy Theory, New York, Academic Press, 1959. | MR | Zbl
,[10] Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. | MR | Zbl
,[11] Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. | MR | Zbl
and ,[12] Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. | MR | Zbl
,[13] Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. | Numdam | MR | Zbl
,Cited by Sources: