Extremal problems for conditioned brownian motion and the hyperbolic metric
Annales de l'Institut Fourier, Volume 50 (2000) no. 5, p. 1507-1532

This paper investigates isoperimetric-type inequalities for conditioned Brownian motion and their generalizations in terms of the hyperbolic metric. In particular, a generalization of an inequality of P. Griffin, T. McConnell and G. Verchota, concerning extremals for the lifetime of conditioned Brownian motion in simply connected domains, is proved. The corresponding lower bound inequality is formulated in various equivalent forms and a special case of these is proved.

Cet article étudie les inégalités de type isopérimétrique pour le mouvement brownien conditionné et leurs généralisations en termes de la métrique hyperbolique. En particulier, on prouve une généralisation d’une inégalité de P. Griffin, T. McConnell et G. Verchota concernant des domaines extrémaux pour le temps de vie du mouvement brownien conditionné dans des domaines simplement connexes. L’inégalité de limite inférieure qui y correspond est formulée sous différentes formes équivalentes, et un de leur cas particuliers est démontré.

     author = {Ba\~nuelos, Rodrigo and Carroll, Tom},
     title = {Extremal problems for conditioned brownian motion and the hyperbolic metric},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {50},
     number = {5},
     year = {2000},
     pages = {1507-1532},
     doi = {10.5802/aif.1798},
     zbl = {0963.31001},
     mrnumber = {2002k:31003},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2000__50_5_1507_0}
Bañuelos, Rodrigo; Carroll, Tom. Extremal problems for conditioned brownian motion and the hyperbolic metric. Annales de l'Institut Fourier, Volume 50 (2000) no. 5, pp. 1507-1532. doi : 10.5802/aif.1798. http://www.numdam.org/item/AIF_2000__50_5_1507_0/

[1] L. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973. | MR 50 #10211 | Zbl 0272.30012

[2] C. Ban Dle, Isoperimetric Inequalities and Applications, Pitman, London, 1980. | MR 81e:35095 | Zbl 0436.35063

[3] R. Bañuelos and T. Carroll, Conditioned Brownian Motion and Hyperbolic Geodesics in Simply Connected Domains, Michigan Math. J., 40 (1993), 321-332. | MR 94k:60116 | Zbl 0805.60077

[4] R. Bañuelos and E. Housworth, An Isoperimetric-type Inequality for Integrals of Green's Functions, Michigan Math. J., 42 (1995), 603-611. | MR 96j:30038 | Zbl 0849.31006

[5] A.F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer-Verlag, New York, 1983. | MR 85d:22026 | Zbl 0528.30001

[6] M. Cranston and T.R. Mcconnell, The Lifetime of Conditioned Brownian Motion, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 65 (1983), 1-11. | MR 85d:60150 | Zbl 0506.60071

[7] P.S. Griffin, T.R. Mcconnell and G.C. Verchota, Conditioned Brownian Motion in Simply Connected Planar Domains, Ann. Inst. Henri Poincaré, 29 (1993), 229-249. | Numdam | MR 94g:60155 | Zbl 0777.60073

[8] P.S. Griffin, G.C. Verchota and A.L. Vogel, Distortion of Area and Conditioned Brownian Motion, Probab. Theory Relat. Fields, 96 (1993), 385-413. | MR 94j:60149 | Zbl 0794.60081

[9] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. | MR 40 #1734 | Zbl 0169.17902

[10] S.G. Krantz, Complex Analysis: the Geometric Viewpoint, Carus Mathematical Monographs 23, Mathematical Association of America, 1990. | MR 92a:30026 | Zbl 0743.30002

[11] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975. | Zbl 0298.30014

[12] J. Xu, The Lifetime of Conditioned Brownian Motion in Planar Domains of Infinite Area, Probab. Theory Relat. Fields, 87 (1991), 469-487. | MR 92d:60086 | Zbl 0718.60092