Levi-flat invariant sets of holomorphic symplectic mappings  [ Ensembles invariants Levi-plats des applications symplectiques holomorphes ]
Annales de l'Institut Fourier, Tome 51 (2001) no. 1, p. 151-208
Nous classifions quatre familles d'ensembles Levi-plats qui sont définis par des polynômes quadratiques et qui sont invariants sous certaines applications symplectiques holomorphes linéaires. La normalisation des ensembles analytiques réels Levi-plats est étudiée par la technique des variétés de Segre. Le but premier de ce papier est l'utilisation des ensembles Levi-plats pour l' étude de la convergence de la normalisation de Birkhoff pour les applications symplectiques holomorphes. Nous établissons aussi des rapports entre ensembles invariants et intégrales premières ou fonctions méromorphes qui sont vecteurs propres de ces applications. Les résultats obtenus pour les applications symplectiques holomorphes sont applicables aux systèmes hamiltoniens holomorphes.
We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets and first-integrals or meromorphic eigenfunctions of such maps. The results obtained for holomorphic symplectic maps are also applicable to holomorphic Hamiltonian systems via time-one maps.
DOI : https://doi.org/10.5802/aif.1820
Classification:  37G05,  32V40,  70H06
Mots clés: ensemble Levi-plat, variété de Segre, application symplectique holomorphe, forme normale de Birkhoff
@article{AIF_2001__51_1_151_0,
     author = {Gong, Xianghong},
     title = {Levi-flat invariant sets of holomorphic symplectic mappings},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {51},
     number = {1},
     year = {2001},
     pages = {151-208},
     doi = {10.5802/aif.1820},
     zbl = {0972.37028},
     mrnumber = {1821073},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2001__51_1_151_0}
}
Gong, Xianghong. Levi-flat invariant sets of holomorphic symplectic mappings. Annales de l'Institut Fourier, Tome 51 (2001) no. 1, pp. 151-208. doi : 10.5802/aif.1820. https://www.numdam.org/item/AIF_2001__51_1_151_0/

[1] M. Artin On the solutions of analytic equations, Invent. Math., Tome 5 (1968), pp. 277-291 | Article | MR 232018 | Zbl 0172.05301

[2] E. Bedford Holomorphic continuation of smooth functions over Levi-flat hypersurfaces, Trans. Amer. Math. Soc., Tome 232 (1977), pp. 323-341 | Article | MR 481100 | Zbl 0382.32009

[3] G.D. Birkhoff Surface transformations and their dynamical applications, Acta Math., Tome 43 (1920), pp. 1-119 | Article | JFM 47.0985.03

[4] G.D. Birkhoff Dynamical Systems, Coll. Publ. 1927, AMS, Tome vol. 9 (1966 (reprinted)) | Zbl 0171.05402

[5] F. Bruhat; H. Cartan Sur la structure des sous-ensembles analytiques réels, C. R. Acad. Sci. Paris, Tome 244 (1957), pp. 988-991 | MR 86108 | Zbl 0081.17201

[6] D. Burns; X. Gong Singular Levi-flat real analytic hypersurfaces, Amer. J. Math., Tome 121 (1999) no. 1, pp. 23-53 | Article | MR 1704996 | Zbl 0931.32009

[7] H. Cartan Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, Tome 85 (1957), pp. 77-99 | Numdam | MR 94830 | Zbl 0083.30502

[8] K. Diederich; J.E. Fornaess Pseudoconvex domains with real-analytic boundary, Ann. Math. (2), Tome 107 (1978) no. 2, pp. 371-384 | Article | MR 477153 | Zbl 0378.32014

[9] L.H. Eliasson Normal forms for Hamiltonian systems with Poisson commuting integrals--elliptic case, Comment. Math. Helv., Tome 65 (1990) no. 1, pp. 4-35 | Article | MR 1036125 | Zbl 0702.58024

[10] H. Ito Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv., Tome 64 (1989), pp. 412-461 | Article | MR 998858 | Zbl 0686.58021

[11] J.K. Moser The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., Tome 9 (1956), pp. 673-692 | Article | MR 86981 | Zbl 0072.40801

[12] H. Rüssmann Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen, Math. Ann., Tome 137 (1959), pp. 64-77 | Article | MR 100064 | Zbl 0084.19904

[13] H. Rüssmann Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., Tome 154 (1964), pp. 285-300 | Article | MR 179409 | Zbl 0124.04701

[14] H. Rüssmann Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., Tome 169 (1967), pp. 55-72 | Article | MR 213679 | Zbl 0143.10801

[15] B. Segre Intorno al problem di Poincaré della rappresentazione pseudo-conform, Rend. Acc. Lincei, Tome 13 (1931), pp. 676-683 | Zbl 0003.21302

[16] C.L. Siegel On integrals of canonical systems, Ann. Math., Tome 42 (1941), pp. 806-822 | Article | JFM 67.0768.01 | MR 5818 | Zbl 0025.26503

[17] C.L. Siegel Über die Existenz einer Normalform analytischer Hamiltonscher Differntialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., Tome 128 (1954), pp. 144-170 | Article | MR 67298 | Zbl 0057.32002

[18] J. Vey Sur certains systèmes dynamiques séparables, Amer. J. Math., Tome 100 (1978), pp. 591-614 | Article | MR 501141 | Zbl 0384.58012

[19] S.M. Webster On the mapping problem for algebraic real hypersurfaces, Invent. Math., Tome 43 (1977) no. 1, pp. 53-68 | Article | MR 463482 | Zbl 0348.32005