Hebisch, Waldemar; Saloff-Coste, Laurent
On the relation between elliptic and parabolic Harnack inequalities  [ Sur les liens entre inégalités de Harnack elliptiques et paraboliques ]
Annales de l'institut Fourier, Tome 51 (2001) no. 5 , p. 1437-1481
Zbl 0988.58007 | MR 1860672 | 3 citations dans Numdam
doi : 10.5802/aif.1861
URL stable : http://www.numdam.org/item?id=AIF_2001__51_5_1437_0

Classification:  58J05,  58J35,  31C25,  58J65,  60J65
Mots clés: équation de Laplace, équation de la chaleur, inégalité de Harnack, espaces de Dirichlet, bornes gaussiennes
Sous l’hypothèse qu’une certaine inégalité de Sobolev est satisfaite, nous montrons qu’une inégalité de Harnack elliptique uniforme implique sa version parabolique. Ni l’inégalité de Sobolev ni l’inégalité de Harnack elliptique, n’implique à elle seule l’inégalité de Harnack parabolique en question; chacune est une condition nécessaire. En conséquence, nous obtenons l’équivalence entre l’inégalité de Harnack parabolique pour le laplacien sur une variété riemannienne M, (i.e., pour t +Δ) et l’inégalité de Harnack elliptique pour - t 2 +Δ sur ×M.
We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for Δ on M, (i.e., for t +Δ) and elliptic Harnack inequality for - t 2 +Δ on ×M.

Bibliographie

[1] C. Camacho; P. Sad Invariant varieties through singularities of holomorphic vector fields, Annals of Math., 115 (1982) MR 657239 | Zbl 0503.32007

[1] P. Auscher; T. Coulhon Gaussian bounds for random walks from elliptic regularity, Ann. Inst. Henri Poincaré, Prob. Stat., 35 (1999), p. 605 -630 Article  Numdam | MR 1705682 | Zbl 0933.60047

[2] D. Bakry; T. Coulhon; M. Ledoux; L. Saloff-Coste Sobolev Inequalities in Disguise, Indiana Univ. Math. J., 44 (1995), p. 1033 -1073 MR 1386760 | Zbl 0857.26006

[3] M. Barlow Diffusions on fractals, Lectures in Probability Theory and Statistics Ecole d'été de Probabilités de Saint Flour XXV-- 1995, Springer (Lecture Notes in Math.) 1690 (1998), p. 1 -121 Zbl 0916.60069

[4] M. Barlow; R. Bass Transition densities for Brownian motion on the Sierpinski carpet, Probab. Th. Rel. Fields, 91 (1992), p. 307 -330 Article  MR 1151799 | Zbl 0739.60071

[5] M. Barlow; R. Bass Random walks on graphical Sierpinski carpets, Cambridge University Press, Symposia Mathematica, 39 (1999) MR 1802425 | Zbl 0958.60045

[6] A. Bendikov; L. Saloff-Coste On and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces, American J. Math., 122 (2000), p. 1205 -1263 Article  MR 1797661 | Zbl 0969.31008

[7] R. Blumental; R. Getoor Markov Processes and Potential Theory, Academic Press, New York and London (1968) MR 264757 | Zbl 0169.49204

[8] G. Carron Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Soc. Math. France, Séminaires et Congrés, 1 (1996), p. 205 -232 Zbl 0884.58088

[9] J. Cheeger; M. Gromov; M. Taylor Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., 17 (1982), p. 15 -53 MR 658471 | Zbl 0493.53035

[10] T. Coulhon; A. Grigor'Yan On-diagonal lower bounds for heat kernels and Markov chains, Duke Math. J., 89 (1997), p. 133 -199 Article  MR 1458975 | Zbl 0920.58064

[11] T. Coulhon; L. Saloff-Coste Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), p. 687 -726 Article  MR 1363211 | Zbl 0845.58054

[12] E.B. Davies Heat kernels and spectral theory, Cambridge University Press (1989) MR 990239 | Zbl 0699.35006

[13] E.B. Davies Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math, 58 (1992), p. 99 -119 Article  MR 1226938 | Zbl 0808.58041

[14] E.B. Davies Non-Gaussian aspects of Heat kernel behaviour, J. London Math. Soc., 55 (1997), p. 105 -125 Article  MR 1423289 | Zbl 0879.35064

[15] T. Delmotte Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana, 15 (1999), p. 181 -232 Article  MR 1681641 | Zbl 0922.60060

[16] T. Delmotte Elliptic and parabolic Harnack inequalities (Potential Analysis, to appear) MR 1881595 | Zbl 1081.39012

[17] E. Fabes; D. Stroock A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rat, Mech. Anal., 96 (1986), p. 327 -338 MR 855753 | Zbl 0652.35052

[18] B. Franchi; C. Gutiérrez; R. Wheeden Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. in Partial Differential Equations, 19 (1994), p. 523 -604 Article  MR 1265808 | Zbl 0822.46032

[19] M. Fukushima; Y. Oshima; M. Takeda Dirichlet forms and Symmetric Markov processes, W. de Gruyter (1994) MR 1303354 | Zbl 0838.31001

[20] A. Grigor'Yan The heat equation on non-compact Riemannian manifolds (Matem. Sbornik) 182 (1991), p. 55 -87 Zbl 0743.58031

[20] A. Grigor'Yan The heat equation on non-compact Riemannian manifolds, Math. USSR Sb. (Engl. Transl.), 72 (1992), p. 47 -77 Article  MR 1098839 | Zbl 0776.58035

[21] A. Grigor'Yan Heat kernel upper bounds on a complete non-compact Riemannian manifold, Revista Mat. Iberoamericana, 10 (1994), p. 395 -452 Article  MR 1286481 | Zbl 0810.58040

[22] A. Grigor'Yan Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geometry, 45 (1997), p. 33 -52 MR 1443330 | Zbl 0865.58042

[23] A. Grigor'Yan Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. A.M.S, 36 (1999), p. 135 -249 Article  MR 1659871 | Zbl 0927.58019

[24] A. Grigor'Yan; E.B. Davies And Y. Sasarov, Eds Estimates of heat kernels on Riemannian manifolds, Spectral Theory and Geometry, Cambridge University Press (London Math. Soc. Lecture Note Series) 273 (1999) Zbl 0985.58007

[25] A. Grigor'Yan; L. Saloff-Coste Heat kernel on connected sums of Riemannian manifolds, Mathematical Research Letters, 6 (1999), p. 1 -14 MR 1713132 | Zbl 0957.58023

[26] A. Grigor'Yan; A. Telcs Sub-Gaussian estimates of heat kernels on infinite graphs (2000) (Preprint) MR 1853353 | Zbl 1010.35016

[27] M. Gromov Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (1998) MR 1699320 | Zbl 05114904

[28] D. Jerison The Poincaré inequality for vector fields satisfying the Hörmander's condition, Duke Math. J., 53 (1986), p. 503 -523 MR 850547 | Zbl 0614.35066

[29] N. Krylov; M. Safonov A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR-Izs, 16 (1981), p. 151 -164 Article  Zbl 0464.35035

[30] S. Kusuoka; D. Stroock Applications of Malliavin Calculus, Part 3, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 34 (1987), p. 391 -442 MR 914028 | Zbl 0633.60078

[31] Y.T. Kuzmenko; S.A. Molchanov Counterexamples to Liouville-type theorems (Vestnik Moskov. Univ., Ser. I Mat. Mekh.) 6 (1976), p. 39 -43 Zbl 0416.35033

[31] Y.T. Kuzmenko; S.A. Molchanov Counterexamples to Liouville-type theorems, Moscow Univ. Math. Bull. (Engl. Transl.), 34 (1979), p. 35 -39 Zbl 0442.35038

[32] P. Li; S-T Yau On the parabolic kernel of Schrödinger operator, Acta Math., 156 (1986), p. 153 -201 Article  MR 834612 | Zbl 0611.58045

[33] J. Moser On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), p. 577 -591 Article  MR 159138 | Zbl 0111.09302

[34] J. Moser A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 16 ; 20 (1964 ; 1967), p. 101 -134 ; 231--236 Article  MR 159139 | Zbl 0149.06902

[35] J. Moser On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math., 24 (1971), p. 727 -740 Article  MR 288405 | Zbl 0227.35016

[36] M. Safonov Harnack's inequality for elliptic equations and the Hölder property of their solutions, J. Soviet Math., 21 (1983), p. 851 -863 Article  Zbl 0511.35029

[37] L. Saloff-Coste Analyse sur les groupes à croissance polynomiale, Ark. för Mat., 28 (1990), p. 315 -331 Article  MR 1084020 | Zbl 0715.43009

[38] L. Saloff-Coste; D. Stroock Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal., 98 (1991), p. 97 -121 Article  MR 1111195 | Zbl 0734.58041

[39] L. Saloff-Coste Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom., 36 (1992), p. 417 -450 MR 1180389 | Zbl 0735.58032

[40] L. Saloff-Coste A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J., IMRN, 2 (1992), p. 27 -38 MR 1150597 | Zbl 0769.58054

[41] L. Saloff-Coste Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis, 4 (1995), p. 429 -467 Article  MR 1354894 | Zbl 0840.31006

[42] L. Saloff-Coste Aspects of Sobolev type inequalities (2001) (To appear in London Math. Soc. Lecture Notes Series, Cambridge University Press) MR 1872526 | Zbl 0991.35002

[43] K-T. Sturm; E. Bolthausen Et Al. Ed. On the geometry defined by Dirichlet forms, Seminar on Stochastic Processes, Random Fields and Applications, Ascona, Birkhäuser (Progress in Probability) vol. 36 (1995), p. 231 -242 Zbl 0834.58039

[44] K-T. Sturm Analysis on local Dirichlet spaces I: Recurrence, conservativeness and L p -Liouville properties, J. Reine Angew. Math., 456 (1994), p. 173 -196 Article  MR 1301456 | Zbl 0806.53041

[45] K-T. Sturm Analysis on local Dirichlet spaces II. Upper Gaussian estimates for fundamental solutions of parabolic equations, Osaka J. Math., 32 (1995), p. 275 -312 MR 1355744 | Zbl 0854.35015

[46] K-T. Sturm Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl., 75 (1996), p. 273 -297 MR 1387522 | Zbl 0854.35016

[47] A. Telcs Local sub-Gaussian estimates of heat kernels on graphs, the strongly recurrent cases (2000) (Preprint)

[48] N. Varopoulos Fonctions harmoniques sur les groupes de Lie, CR. Acad. Sci. Paris, Sér. I Math., 304 (1987), p. 519 -521 MR 892879 | Zbl 0614.22002

[49] N. Varopoulos Small time Gaussian estimates of the heat diffusion kernel, Part 1: the semigroup technique, Bull. Sci. Math., 113 (1989), p. 253 -277 MR 1016211 | Zbl 0703.58052

[50] N. Varopoulos; L. Saloff-Coste; T. Coulhon Analysis and geometry on groups, Cambridge University Press (1993) MR 1218884 | Zbl 0813.22003