p-adic Abelian Stark conjectures at s=1
Annales de l'Institut Fourier, Volume 52 (2002) no. 2, p. 379-417

A p-adic version of Stark’s Conjecture at s=1 is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our p-adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed in more detail and proved in two special cases.

Une version p-adique de la conjecture de Stark en s=1 est attribuée à J.-P. Serre et énoncée (de manière fautive) dans le livre de Tate sur cette conjecture. Dans le cas d’un corps de rayon réel sur un corps de nombres totalement réel, on présente ici une nouvelle conjecture de ce type, suivant plutôt la démarche de notre article précédent (et le travail de Rubin) sur la conjecture complexe abélienne. On étudie la cohérence de cette conjecture et on énonce des raffinements ‘sur ’, soit d’elle seule, soit en combinaison avec son analogue complexe. Enfin, la version ‘Weak Refined Combined’ fait l’objet d’une discussion plus détaillée et d’une démonstration dans deux cas particuliers.

DOI : https://doi.org/10.5802/aif.1891
Classification:  11R42,  11S40,  11R20,  11R27
Keywords: Stark conjecture, p-adic, L-function, zeta-function, abelian extension, unit, S-unit, regular, special value, totally real field
@article{AIF_2002__52_2_379_0,
     author = {Solomon, David},
     title = {$p$-adic Abelian Stark conjectures at $s=1$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {52},
     number = {2},
     year = {2002},
     pages = {379-417},
     doi = {10.5802/aif.1891},
     zbl = {1039.11081},
     mrnumber = {1906480},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2002__52_2_379_0}
}
Solomon, David. $p$-adic Abelian Stark conjectures at $s=1$. Annales de l'Institut Fourier, Volume 52 (2002) no. 2, pp. 379-417. doi : 10.5802/aif.1891. http://www.numdam.org/item/AIF_2002__52_2_379_0/

[AF] Y. Amice; J. Fresnel Fonctions Zêta p-adiques des Corps de Nombres Algébriques Abéliens Réels, Acta Arith., Tome 20 (1972), pp. 353-384 | MR 337898 | Zbl 0217.04303

[CN] Pi. Cassou-Noguès Valeurs aux Entiers Négatifs des Fonctions Zêta et Fonctions Zêta p-Adiques, Inventiones Mathematicae, Tome 51 (1979), pp. 29-59 | Article | MR 524276 | Zbl 0408.12015

[Co] P. Colmez Résidu en s=1 des Fonctions Zêta p-adiques, Inventiones Mathematicae, Tome 91 (1988), pp. 371-389 | Article | MR 922806 | Zbl 0651.12010

[Gr1] B.H. Gross p-adic L-series at s=0, J. Fac. Sci. Univ. Tokyo, Tome 28 (1981), pp. 979-994 | MR 656068 | Zbl 0507.12010

[Gr2] B.H. Gross On the Values of Abelian L-functions at s=0, J. Fac. Sci. Univ. Tokyo, Tome 35 (1988), pp. 177-197 | MR 931448 | Zbl 0681.12005

[Ha] D. Hayes The Refined p-adic Abelian Stark Conjecture in Function Fields, Inventiones Mathematicae, Tome 94 (1988), pp. 505-527 | Article | MR 969242 | Zbl 0666.12009

[Ka] N. Katz Another Look at p-Adic L-Functions for Totally Real Fields, Math. Ann., Tome 255 (1988), pp. 33-43 | Article | MR 611271 | Zbl 0497.14006

[La] S. Lang Cyclotomic Fields I and II, Springer-Verlag, New York, Graduate Texts in Math., Tome 121 (1990) | MR 1029028 | Zbl 0704.11038

[Po] C. Popescu Base Change for Stark-Type Conjectures "Over '' (To appear in J. reine angew. Math.) | MR 1880826 | Zbl 1074.11062

[RS] X.-F. Roblot; D. Solomon Verifying a p-Adic Abelian Stark Conjecture at s=1 (2001) (Preprint)

[Ru] K. Rubin A Stark Conjecture "Over Z" for Abelian L-Functions with Multiple Zeros, Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 33-62 | Article | Numdam | MR 1385509 | Zbl 0834.11044

[Se1] J.-P. Serre Sur le Résidu de la Fonction Zêta p-adique d'un Corps de Nombres, C. R. Acad. Sc. Paris, Série A, Tome 287 (1978), pp. 183-188 | MR 506177 | Zbl 0393.12026

[Se2] J.-P. Serre Local Fields, Springer-Verlag, New York (1979) | MR 554237 | Zbl 0423.12016

[Sh] T. Shintani On Evaluation of Zeta Functions of Totally Real Algebraic Number Fields at Non-Positive Integers, J. Fac. Sci. Univ. Tokyo, Sec. 1A, Tome 23 (1976) no. 2, pp. 393-417 | MR 427231 | Zbl 0349.12007

[Si] C. L. Siegel Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad.Wiss Göttingen, Tome 3 (1970), pp. 15-56 | MR 285488 | Zbl 0225.10031

[So1] D. Solomon Galois Relations for Cyclotomic Numbers and p-Units, Journal of Number Theory, Tome 46 (1994) no. 2, pp. 158-178 | Article | MR 1269250 | Zbl 0807.11054

[So2] D. Solomon Twisted Zeta-Functions and Abelian Stark Conjectures (To appear in the Journal of Number Theory) | MR 1904961 | Zbl 1032.11051

[St] H. Stark L-Functions at s=1, I, Advances in Mathematics, Tome 7 (1971), pp. 301-343 | MR 289429 | Zbl 0263.10015

[St] H. Stark L-Functions at s=1, II, Advances in Mathematics, Tome 17 (1975), pp. 60-92 | MR 382194 | Zbl 0316.12007

[St] H. Stark L-Functions at s=1, III, Advances in Mathematics, Tome 22 (1976), pp. 64-84 | MR 437501 | Zbl 0348.12017

[St] H. Stark L-Functions at s=1, IV, Advances in Mathematics, Tome 35 (1980), pp. 197-235 | MR 563924 | Zbl 0475.12018

[Ta] J. T. Tate Les Conjectures de Stark sur les Fonctions L d'Artin en s=0, Birkhäuser, Boston (1984) | MR 782485 | Zbl 0545.12009

[Wa] L. Washington Introduction to Cyclotomic Fields, Springer-Verlag, New York, Graduate Texts in Math., Tome 83 (1982) | MR 718674 | Zbl 0484.12001