On vanishing inflection points of plane curves
Annales de l'Institut Fourier, Volume 52 (2002) no. 3, p. 849-880

We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs f:( 2 ,0)(,0) which take into account the inflection points of the fibres of f. We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.

Le but de cet article est d’introduire une théorie des formes normales et des déformations des courbes projectives planes qui tienne compte de leurs points d’inflexion. On procède de la façon suivante. Soit f:( 2 ,0)(,0) un germe de fonction holomorphe avec un point critique à l’origine et Δ f :( 2 ,0)(,0) son hessien. On étudie l’application (f,Δ f ) en oubliant les relations différentielles entre f et Δ f . Ceci permet de définir une notion d’équivalence par rapport aux inflexions appelée 𝒫-équivalence ainsi qu’une notion de déformation verselle par rapport aux inflexions. On montre qu’il existe un seul germe 𝒫-stable puis on donne la liste des fonctions 𝒫-simples. À l’aide des techniques introduites, on détermine la stratification par rapport aux inflexions de l’espace des déformations d’un germe 𝒫-simple.

DOI : https://doi.org/10.5802/aif.1904
Classification:  37G25,  14N15
Keywords: Plücker formulas, normal forms, inflection points, bifurcation diagrams, projective geometry
@article{AIF_2002__52_3_849_0,
     author = {Garay, Mauricio},
     title = {On vanishing inflection points of plane curves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {52},
     number = {3},
     year = {2002},
     pages = {849-880},
     doi = {10.5802/aif.1904},
     zbl = {1116.14301},
     zbl = {01794817},
     mrnumber = {1907390},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2002__52_3_849_0}
}
Garay, Mauricio. On vanishing inflection points of plane curves. Annales de l'Institut Fourier, Volume 52 (2002) no. 3, pp. 849-880. doi : 10.5802/aif.1904. http://www.numdam.org/item/AIF_2002__52_3_849_0/

[1] V.I. Arnold Normal forms for functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities, Funct. Anal. Appl., Tome 6 (1972) no. 4, pp. 254-272 | Article | MR 356124 | Zbl 0278.57011

[2] V.I. Arnold Mathematical methods of classical mechanics, Springer ; English transl. (Nauka) (1974 ; 1978), pp. 462 p | Zbl 0386.70001

[3] V.I. Arnold Wave front evolution and the equivariant Morse lemma, Comm. Pure Appl. Math., Tome 29 (1976) no. 6, pp. 557-582 | Article | MR 436200 | Zbl 0343.58003

[4] V.I. Arnold Vanishing inflexions, Funct. Anal. Appl., Tome 18 (1984) no. 2, p. 51-52 | MR 745699 | Zbl 0565.32009

[5] V.I. Arnold; V.I. Vassiliev; V.V. Goryunov; O.V. Lyashko Singularity theory I, dynamical systems VI, VINITI, Moscow, Springer-Verlag ; English transl. (1993), pp. 245 p

[6] J. Damon The unfolding and determinacy theorems for subgroups of 𝒜 and 𝒦, Memoirs of the AMS, Tome vol. 50 (1984) | MR 748971 | Zbl 0545.58010

[7] M. Garay Théorie des points d'aplatissement évanescents des courbes planes et spatiales (2001) (Thèse, Université de Paris 7, février (in English))

[8] M. Garay On simple families of functions (2002) (Preprint Mainz Universität)

[9] V.V. Goryunov Vector fields and functions on discriminants of complete intersections and bifurcation diagrams of projections, Funct. Anal. Appl., Tome 15 (1981), pp. 77-82 | Zbl 0507.58010

[10] P. Griffiths; J. Harris Principles of algebraic geometry, Wiley Interscience (1978) | MR 507725 | Zbl 0408.14001

[11] M.E. Kazarian Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, Itogi Nauli Tekh., Ser. Sovrem Probl. Math., Noviejshie dostizh., Tome 33 (1988), pp. 215-234 | Zbl 0738.57016

[11] M.E. Kazarian Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, J. Soviet Math. (English transl.), Tome 52 (1990), pp. 3338-3349 | Zbl 0900.57004

[12] M.E. Kazarian Bifurcations of flattening and Schubert cells, AMS (Advances Soviet Math. I) (1990), pp. 145-156

[13] M.E. Kazarian Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Usp. Mat. Nauk, Tome 46 (1961) no. 5, pp. 79-119 | Zbl 0783.32015

[13] M.E. Kazarian Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Russ. Math. Surveys (English transl.), Tome 46 (1992) no. 5, pp. 91-136 | Article | Zbl 0783.32015

[14] F. Klein Development of mathematics in the XIXth century, Lie groups history, frontiers and applications, Math. Sci. Press, Massachussets, Tome vol. 9 (1979), pp. 630 p. | Zbl 0411.01009

[15] J. Martinet Singularities of smooth functions and maps, Cambridge University Press, London Math. Soc. Lecture Notes Series, Tome vol. 58 (1982) | MR 671585 | Zbl 0522.58006

[16] J. Mather Stability of C mappings, I, Ann. of Math., Tome 87 (1968) | MR 232401 | Zbl 0159.24902

[16] J. Mather Stability of C mappings, III, Pub. Sci. IHES, Tome 35 (1969) | Numdam | Zbl 0159.25001

[16] J. Mather Stability of C mappings, II, Ann. of Math., Tome 89 (1969) | MR 259953 | Zbl 0177.26002

[16] J. Mather Stability of C mappings, IV, Pub. Sci. IHES, Tome 37 (1970) | Numdam | Zbl 0202.55102

[16] J. Mather Stability of C ä mappings, V, Adv. in Math., Tome 4 (1970) | MR 275461 | Zbl 0207.54303

[16] J. Mather Stability of C mappings, VI, Lecture Notes in Math., Tome 192 (1971) | Article | MR 293670 | Zbl 0211.56105

[17] J. Plücker System der Analytischen Geometrie, Gessam. Wissen. Abhand., B.G. Teubner Tome vol. Band 1 ; vol. 2 (1834, 1898)

[18] R. Piene Numerical characters of a curve in projective n-space, Real and complex singularities (1977), pp. 475-495 | Zbl 0375.14017

[19] G.N. Tyurina Locally semi-universal plane deformations of isolated singularities in complex space, Math. USSR Izv., Tome 32 (1968) no. 3, pp. 967-999 | Zbl 0209.11301

[20] R. Uribe Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces (2001) (Thèse Université de Paris 7)

[21] V.M. Zakalyukin Lagrangian and Legendrian singularities, Funct. Anal. Appl., Tome 10 (1976) no. 1 | Zbl 0331.58007