Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains
Annales de l'Institut Fourier, Volume 52 (2002) no. 6, p. 1793-1831

For a strongly pseudoconvex domain D n+1 defined by a real polynomial of degree k 0 , we prove that the Lie group Aut (D) can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle Y of D, and that the sum of its Betti numbers is bounded by a certain constant C n,k 0 depending only on n and k 0 . In case D is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser theory to the algebraic hypersurfaces.

Si D est un domaine fortement pseudo-convexe de n+1 , défini par un polynôme réel de degré k 0 , nous montrons que le groupe de Lie Aut (D) s’identifie à une variété algébrique de Nash constructible du CR fibré Y de D, et que la somme de ses nombres de Betti est bornée par une constante C n,k 0 , dépendant seulement de n et de k 0 . Lorsque D est simplement connexe, nous donnons une borne explicite, mais plus grossière, en fonction de la dimension et du degré du polynôme. Notre approche consiste à adapter la théorie de Cartan-Chern-Moser aux hypersurfaces algébriques.

Classification:  32V40,  14P15,  32E99,  32H02,  32T15
Keywords: real algebraic hypersurfaces, automorphism group, algebraic domains, Cartan-Chern-Moser theory, strongly pseudoconvex domain, Betti numbers
     author = {Huang, Xiaojun and Ji, Shanyu},
     title = {Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     pages = {1793-1831},
     doi = {10.5802/aif.1935},
     zbl = {1023.32024},
     mrnumber = {1954325},
     language = {en},
     url = {}
Huang, Xiaojun; Ji, Shanyu. Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains. Annales de l'Institut Fourier, Volume 52 (2002) no. 6, pp. 1793-1831. doi : 10.5802/aif.1935.

[Be] S. Bell; S. Krantz Ed. Compactness of families of holomorphic mappings up to the boundary, Springer-Verlag (Lecture Notes in Math) Tome 1268, pp. 29-43 | Zbl 0633.32020

[BER1] M.S. Baouendi; P. Ebenfelt; L.P. Rothschild Parametrization of local biholomorphisms of real analytic hypersurfaces, Asian J. Math, Tome Vol 1 (1997), pp. 1-16 | MR 1480988 | Zbl 0943.32021

[BER2] M. S. Baouendi; P. Ebenfelt; L. Rothschild Real Submanifolds in Complex Spaces and Their Mappings, Princeton University, New Jersey, Princeton Univ. Mathematics Series, Tome 47 (1999) | MR 1668103 | Zbl 0944.32040

[BER3] M.S. Baouendi; P. Ebenfelt; L.P. Rothschild Local geometric properties of real submanifolds in complex spaces, Bull. AMS, Tome 37 (2000), pp. 309-336 | Article | MR 1754643 | Zbl 0955.32027

[Bo] S. Bochner Analytic and meromorphic continuation by means of Green's formula, Ann. of Math, Tome 44 (1943), pp. 652-673 | Article | MR 9206 | Zbl 0060.24206

[BS] D. Jr Burns; S. Shnider Projective connections in CR geometry, Manuscripta Math, Tome 33 (1980), pp. 1-26 | Article | MR 596374 | Zbl 0478.32018

[BT] R. Bott; L. W. Tu Differential Forms in Algebraic Topology, Springer-Verlag, Graduate Texts in Mathematics (1982) | MR 658304 | Zbl 0496.55001

[Ch] S.-S. Chern On the projective structure of a real hypersurface in C n +1, Math. Scand, Tome 36 (1975), pp. 74-82 | MR 379910 | Zbl 0305.53019

[CJ1] S.-S. Chern; S. Ji Projective geometry and Riemann's mapping problem, Math Ann, Tome 302 (1995), pp. 581-600 | Article | MR 1339928 | Zbl 0843.32013

[CJ2] S.-S. Chern; S. Ji On the Riemann mapping theorem, Ann. of Math, Tome 144 (1996), pp. 421-439 | Article | MR 1418903 | Zbl 0872.32016

[CM] S. S. Chern; J. K. Moser Real hypersurfaces in complex manifolds, Acta Math, Tome 133 (1974), pp. 219-271 | Article | MR 425155 | Zbl 0302.32015

[ES] S. Eilenberg; N. Steenrod Foundations of algebraic topology, Princeton Univ. Press, Princeton, N.J. (1952) | MR 50886 | Zbl 0047.41402

[Fa] J. Faran Segre families and real hypersurfaces, Invent. Math, Tome 60 (1980), pp. 135-172 | Article | MR 586425 | Zbl 0464.32011

[Ga] R. Gardner The method of equivalence and its applications, CBMS-NSF (regional conference series in applied mathematics) (1989) | Zbl 0694.53027

[H1] X. Huang On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions, Ann. Inst. Fourier, Grenoble, Tome 44 (1994) no. 2, pp. 433-463 | Article | Numdam | MR 1296739 | Zbl 0803.32011

[H2] X. Huang Geometric Analysis in Several Complex Variables (August, 1994) (Ph. D. Thesis, Washington University)

[H3] X. Huang; Edited By L. Yang And S. T. Yau On some problems in several complex variables and Cauchy-Riemann Geometry, Proceedings of ICCM (AMS/IP Stud. Adv. Math) Tome 20 (2001), pp. 383-396 | Zbl 1048.32022

[HJ] X. Huang; S. Ji Global holomorphic extension of a local map and a Riemann mapping Theorem for algebraic domains, Math. Res. Lett, Tome 5 (1998), pp. 247-260 | MR 1617897 | Zbl 0912.32010

[HJY] X. Huang; S. Ji; S.S.T. Yau An example of real analytic strongly pseudoconvex hypersurface which is not holomorphically equivalent to any algebraic hypersurfaces, Ark. Mat., Tome 39 (2001), pp. 75-93 | Article | MR 1821083 | Zbl 1038.32034

[M] J. Milnor On the Betti numbers of real varieties. Proc. Amer. Math. Soc, Tome 15 (1964), pp. 275-280 | MR 161339 | Zbl 0123.38302

[Pi] S. Pinchuk On holomorphic maps or real-analytic hypersurfaces, Mat. Sb., Nov. Ser., Tome 105 (1978), pp. 574-593 | MR 496595

[V] A.G. Vitushkin, Holomorphic mappings and geometry of hypersurfaces, Several Complex Variables I, Springer-Verlag, Berlin (Encyclopaedia of Mathematical Sciences) Tome Vol. 7 (1985), pp. 159-214 | Zbl 0781.32013

[We] S.M. Webster On the mapping problem for algebraic real hypersurfaces, Invent. Math, Tome 43 (1977), pp. 53-68 | Article | MR 463482 | Zbl 0348.32005