Hochschild homology and cohomology of generalized Weyl algebras
Annales de l'Institut Fourier, Volume 53 (2003) no. 2, p. 465-488
We compute Hochschild homology and cohomology of a class of generalized Weyl algebras, introduced by V. V. Bavula in St. Petersbourg Math. Journal, 4 (1) (1999), 71-90. Examples of such algebras are the n-th Weyl algebras, 𝒰(𝔰𝔩 2 ), primitive quotients of 𝒰(𝔰𝔩 2 ), and subalgebras of invariants of these algebras under finite cyclic groups of automorphisms. We answer a question of Bavula–Jordan (Trans. A.M.S., 353 (2) (2001), 769-794) concerning the generators of the group of automorphisms of a generalized Weyl algebra. We also explain previous results on the invariants of Weyl algebras and of primitive quotients
Nous calculons l'homologie et la cohomologie de Hochschild des algèbres de Weyl généraliseés introduites par V. Bavula. Nous répondons à une question de Bavula-Jordan concernant les générateurs du groupe d'automorphismes d'une telle algèbre. Ce calcul explique aussi des résultats connus sur les invariants des algèbres de Weyl et des quotients primitifs.
DOI : https://doi.org/10.5802/aif.1950
Classification:  16E40,  17B37,  16S32
Keywords: Hochschild cohomology, generalized Weyl algebras, automorphism group
@article{AIF_2003__53_2_465_0,
     author = {Farinati, Marco A. and Solotar, Andrea L. and Su\'arez-\'Alvarez, Mariano},
     title = {Hochschild homology and cohomology of generalized Weyl algebras},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     pages = {465-488},
     doi = {10.5802/aif.1950},
     zbl = {1100.16008},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2003__53_2_465_0}
}
Farinati, Marco A.; Solotar, Andrea L.; Suárez-Álvarez, Mariano. Hochschild homology and cohomology of generalized Weyl algebras. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 465-488. doi : 10.5802/aif.1950. http://www.numdam.org/item/AIF_2003__53_2_465_0/

[1] J. Alev; M. Farinati; T. Lambre; A. Solotar Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini, J. of Alg., Tome Vol. 232 (2000) no. 2, pp. 564-577 | Article | MR 1792746 | Zbl 1002.16005

[2] J. Alev; T. Lambre Comparaison de l'homologie de Hochschild et de l'homologie de Poisson pour une déformation des surfaces de Klein, Algebra and Operator Theory, Proceedings of the Colloquium, Tashkent, Kluwer Academic publishers (1998), pp. 25-38 | Zbl 0931.16007

[3] J. Alev; T. Lambre Homologie des invariants d'une algèbre de Weyl, K-Theory, Tome 18 (1999), pp. 401-411 | Article | MR 1738900 | Zbl 0983.16007

[4] V. Bavula Generalized Weyl algebras and their representations, St. Petersbourg Math. J, Tome 4 (1990) no. 1, pp. 71-90 | MR 1171955 | Zbl 0807.16027

[5] V. Bavula; D. Jordan Isomorphism problems and groups automorphisms for generalized Weyl algebras, Trans. Am. Math. Soc, Tome 353 (2001) no. 2, pp. 769-794 | Article | MR 1804517 | Zbl 0961.16016

[6] V. Bavula; T. Lenagan Krull dimension of generalized Weyl algebras with noncommutative coefficients, J. of Alg, Tome 235 (2001) no. 1, pp. 315-358 | Article | MR 1807668 | Zbl 0998.16014

[7] D. Burghelea; M. Vigué-Poirrier Cyclic homology of commutative algebras, I, Springer Lecture Notes in Math, Tome 1318 (1988), pp. 51-72 | Article | MR 952571 | Zbl 0666.13007

[8] H. Cartan; S. Eilenberg Homological algebra, Princeton Univ. Press, Princeton (1956) | MR 77480 | Zbl 0075.24305

[9] J. Dixmier Quotients simples de l'algèbre enveloppante de 𝔰𝔩 2 , J. of Alg., Tome 24 (1973), pp. 551-574 | MR 310031 | Zbl 0252.17004

[10] P. Etingof; V. Ginzburg Symplectic reflection algebras, Calogero-Moser spaces, and deformed Harish-Chandra homomorphism (e-print, arXiv:math.AG/0011114 v5) | MR 1881922 | Zbl 1061.16032

[11] O. Fleury Automorphismes d'algèbres enveloppantes classiques et quantifiées : sous-groupes finis et invariants (1997) (Thèse Université de Reims, Champagne-Ardenne)

[12] O. Fleury Sur les invariants de B λ sous l'action de sous-groupes finis d'automorphismes: conjecture de Gelfand - Kirillov et homologie de Hochschild, Comm. in Alg, Tome 29 (2001) no. 8, pp. 3535-3557 | Article | MR 1849502 | Zbl 0992.17008

[13] T.J. Hodges Noncommutative deformations of type-A Kleinian singularities, J. Algebra, Tome 161 (1993) no. 2, pp. 271-290 | Article | MR 1247356 | Zbl 0807.16029

[14] C. Kassel L'homologie cyclique des algèbres enveloppantes, Invent. Math, Tome 91 (1988) no. 2, pp. 221-251 | Article | MR 922799 | Zbl 0653.17007

[15] C. Kassel; M. Vigué-Poirrier Homologie des quotients primitifs de l'algèbre enveloppante de 𝔰𝔩 2 , Math. Ann, Tome 294 (1992) no. 3, pp. 483-502 | MR 1188133 | Zbl 0767.17017

[16] S. Smith A class of algebras similar to the enveloping algebra of 𝔰𝔩 2 , Trans. Am. Math. Soc, Tome 322 (1990) no. 1, pp. 285-314 | MR 972706 | Zbl 0732.16019

[17] T. A. Springer Invariant theory, Springer-Verlag, Berlin-Heidelberg-New York, Lecture Notes in Mathematics, Tome 585 (1977) | MR 447428 | Zbl 0346.20020

[18] R. Sridharan Filtered algebras and representations of Lie algebras, Trans. Am. Math. Soc, Tome 100 (1961), pp. 530-550 | Article | MR 130900 | Zbl 0099.02301

[19] D. Stefan Hochschild cohomology on Hopf-Galois extensions, J. Pure Appl. Alg, Tome 103 (1995) no. 2, pp. 221-233 | Article | MR 1358765 | Zbl 0838.16008

[20] M. Suárez-Álvarez Multiplicative structure of Hochschild cohomology of the ring of invariants of a Weyl algebra under finite groups (To appear in J. of Alg) | MR 1879019 | Zbl 1008.16006

[21] M. Suárez-Álvarez Hochschild cohomology of primitive quotients of U ( 𝔰𝔩 2 ) and their rings of invariants (Preprint, http://www.math.jussieu.fr/\mariano)

[22] M. Van Den Bergh A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Am. Math. Soc, Tome 126 (1998) no. 5, pp. 1345-1348 | Article | MR 1443171 | Zbl 0894.16005

[23] M. Van Den Bergh A relation between Hochschild homology and cohomology for Gorenstein rings (Erratum) (to appear) | MR 1900889 | MR 1443171 | Zbl 0894.16005