Toric embedded resolutions of quasi-ordinary hypersurface singularities  [ Résolutions toriques plongées des singularités quasi-ordinaires d'hypersurface ]
Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1819-1881.

Nous construisons deux procédés de résolution plongée d'un germe de singularité quasi- ordinaire d'hypersurface analytique complexe qui ne dépendent que des monômes caractéristiques associés à une projection quasi-ordinaire du germe. Ce résultat est une solution à l'un des problèmes ouverts posés par Lipman dans Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-503. Dans le premier procédé la singularité est plongée comme hypersurface. Dans le deuxième procédé, qui est inspiré par un travail de Goldin et Teissier pour les germes de courbes planes (voir Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), la singularité est replongée convenablement dans un espace affine de dimension plus grande et nous construisons des résolutions plongées avec un seul morphisme torique. Nous comparons ces deux procédés et nous montrons qu'ils coïncident sous certaines hypothèses.

We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.

DOI : https://doi.org/10.5802/aif.1993
Classification : 32S15,  32S45,  14M25,  14E15
Mots clés : singularités, résolutions plongées, discriminants, type topologique
@article{AIF_2003__53_6_1819_0,
     author = {Gonz\'alez P\'erez, Pedro D.},
     title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {1819--1881},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {53},
     number = {6},
     year = {2003},
     doi = {10.5802/aif.1993},
     zbl = {1052.32024},
     mrnumber = {2038781},
     language = {en},
     url = {archive.numdam.org/item/AIF_2003__53_6_1819_0/}
}
González Pérez, Pedro D. Toric embedded resolutions of quasi-ordinary hypersurface singularities. Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1819-1881. doi : 10.5802/aif.1993. http://archive.numdam.org/item/AIF_2003__53_6_1819_0/

[A1] S.S. Abhyankar On the ramification of algebraic functions., Amer. J. Math., Volume 77 (1955), pp. 575-592 | Article | MR 71851 | Zbl 0064.27501

[A2] S.S. Abhyankar Inversion and invariance of characteristic pairs, Amer. J. Math, Volume 89 (1967), pp. 363-372 | Article | MR 220732 | Zbl 0162.34103

[A3] S.S. Abhyankar Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977)

[A'C-Ok] N. A' Campo; M. Oka Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math, Volume 33 (1996), pp. 1003-1033 | MR 1435467 | Zbl 0904.14014

[A-M] S.S. Abhyankar; T. Moh Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math, Volume 260 (1973), pp. 47-83 | Article | MR 337955 | Zbl 0272.12102

[A-M] S.S. Abhyankar; T. Moh Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math., Volume 261 (1973), pp. 29-54 | MR 337955 | Zbl 0272.12102

[B-M] C. Ban; L. McEwan Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math., Volume 52 (2000) no. 6, pp. 1149-1163 | Article | MR 1794300 | Zbl 1002.14003

[B-P-V] W. Barth; C. Peters; A. Van de Ven Compact Complex Surfaces, Annals of Math. Studies (3), Springer-Verlag, 1984 | MR 749574 | Zbl 0718.14023

[Bbk] N. Bourbaki Algebre commutative Volume Chap. I-IV, Masson, 1981 | MR 643362 | Zbl 0498.12001

[Ca] A. Campillo Algebroid Curves in positive characteristic, Lecture Notes in Mathematics, Volume 813, Springer, Berlin, 1980 | MR 584440 | Zbl 0451.14010

[Co] D. Cox; H. Hauser, J. Lipman, F.Oort and A. Quiros. Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics) Volume 181 (2000), pp. 259-283 | Zbl 0969.14035

[Eg] H. Eggers Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften, Volume 147 (1983) | MR 701391 | Zbl 0559.14018

[Ew] G. Ewald Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, 1996 | MR 1418400 | Zbl 0869.52001

[F] W. Fulton Introduction to Toric Varieties, Annals of Math. Studies, Volume 131, Princeton University Press, 1993 | MR 1234037 | Zbl 0813.14039

[G-P] J. Gwo\' zdziewicz; A. Ploski On the Approximate Roots of Polynomials, Annales Polonici Mathematici, Volume LX (1995) no. 3, pp. 199-210 | MR 1316488 | Zbl 0826.13012

[G-T] R. Goldin; B. Teissier; H. Hauser, J. Lipman, F.Oort and A. Quiros. Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics) Volume 181 (2000), pp. 315-340 | Zbl 0995.14002

[Gau] Y-N. Gau Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Volume 388 (1988) | MR 954948 | Zbl 0658.14004

[GB1] E.R. Garc\'ia; Barroso Invariants des singularités de courbes planes et courbure des fibres de Milnor (1996) (Tesis Doctoral, Universidad de La Laguna (Spain))

[GB2] E.R. Garc\'ia; Barroso Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc, Volume 81 (2000) no. 1, pp. 1-28 | Article | MR 1756330 | Zbl 01696272

[GB-GP] E.R. Garc\'ia; Barroso; P.D. González; Pérez Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). | Zbl 1079.14059

[GP3] P.D. González; Pérez The semigroup of a quasi-ordinary hypersurface (to appear in J. Inst. Math. Jussieu) | MR 1990220

[GP1] P.D. González; Pérez Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math., Volume 52 (2000) no. 2, pp. 348-368 | Article | MR 1755782 | Zbl 0970.14027

[GP2] P.D. González; Pérez Quasi-ordinary singularities via toric geometry (2000) (Tesis Doctoral, Universidad de La Laguna)

[GP-M-N] P.D. González; Pérez; L.J. Mc; Ewan; A. Némethi The zeta function of a quasi-ordinary singularity II (to appear in R. Michler Memorial, Proc. Amer. Math. Soc.) | MR 1986117 | Zbl 1080.14002

[GP-T] P.D. González; Pérez; B. Teissier Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. | Zbl 1052.14062

[GS-LJ] G. Gonzalez-Sprinberg; M. Lejeune-Jalabert Modèles canoniques plongés. I, Kodai Math. J., Volume 14 (1991) no. 2, pp. 194-209 | Article | MR 1123416 | Zbl 0772.14008

[J] H.W.E. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen x, y in der Umgebung einer stelle x=a, y=b, J. reine angew. Math., Volume 133 (1908), pp. 289-314 | Article | JFM 39.0493.01

[K-K-M-S] G. Kempf; F. Knudsen; D. Mumford; B. St-Donat Toroidal Embeddings, Springer Lecture Notes in Mathematics, Volume 339, Springer Verlag, 1973 | Zbl 0271.14017

[Kou] A.G. Kouchnirenko Polyèdres de Newton et nombres de Milnor, Inv. Mat, Volume 32 (1976), pp. 1-31 | Article | MR 419433 | Zbl 0328.32007

[L1] J. Lipman Quasi-ordinary singularities of embedded surfaces (1965) (Thesis, Harvard University)

[L2] J. Lipman Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics, Volume 29 (1975), pp. 187-230 | MR 389901 | Zbl 0306.14007

[L3] J. Lipman Quasi-ordinary singularities of surfaces in 3 , Proceedings of Symposia in Pure Mathematics, Volume 40 (1983) no. 2, pp. 161-172 | MR 713245 | Zbl 0521.14014

[L4] J. Lipman Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Volume 388 (1988) | MR 954947 | Zbl 0658.14003

[L5] J. Lipman; H. Hauser, J. Lipman, F.Oort and A. Quiros. Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics) Volume 181 (2000), pp. 485-503 | Zbl 0970.14011

[L-M-W] D.T. Lê; F. Michel; C. Weber Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math., Volume 72 (1989) no. 1, pp. 87-113 | Numdam | MR 1026330 | Zbl 0705.32021

[Lau] H. Laufer Normal two dimensional singularities, Annals of Math. Studies, Volume 71, Princenton University Press, 1971 | MR 320365 | Zbl 0245.32005

[Le-Ok] D.T. Lê; M. Oka On resolution complexity of plane curves, Kodaira Math. J, Volume 18 (1995), pp. 1-36 | Article | MR 1317003 | Zbl 0844.14010

[LJ] M. Lejeune-Jalabert; Lê D\ ung Tráng Sur l'équivalence des singularités des courbes algebro\" \i des planes (coefficients de Newton), Introduction à la théorie des singularités I (1988), pp. 49-154 | Zbl 0699.14036

[LJ-R] M. Lejeune-Jalabert; A. Reguera López Arcs and wedges on sandwiched surface singularities, Amer. J. Math, Volume 121 (1999) no. 6, pp. 1191-1213 | Article | MR 1719822 | Zbl 0960.14015

[LJ-R2] M. Lejeune-Jalabert; A. Reguera López Desingularization of both a plane branch C and its monomial curve C Γ (2000) (Manuscript)

[Lu] I. Luengo On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics, Volume 40 (1983), pp. 185-193 | MR 713247 | Zbl 0527.14032

[M-N] L.J. McEwan; A. Némethi The zeta function of a quasi-ordinary singularity I (to appear in Compositio Math.) | MR 1986117 | Zbl 1066.14004

[Me] M. Merle Invariants polaires des courbes planes, Inv. Math., Volume 41 (1977), pp. 103-111 | Article | MR 460336 | Zbl 0371.14003

[Mu] D. Mumford The Red Book on Varieties and Schemes, Lecture Notes in Mathematics, Volume 1358, Springer-Verlag, 1988 | MR 971985 | Zbl 0658.14001

[Od] T. Oda Convex Bodies and Algebraic Geometry, Annals of Math. Studies, Volume 131, Springer-Verlag, 1988 | MR 922894 | Zbl 0628.52002

[Ok] M. Oka; A. Campillo López and L. Narváez Macarro Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities (Progress in Mathematics) Volume 139 (1996) | Zbl 0857.14014

[PP1] P. Popescu-Pampu; F.-V. Kuhlmann, S.Kuhlmann, M. Marshall eds Approximate roots, Valuation Theory and its Applications (Fields Inst. Communications Ser.) Volume vol. II | Zbl 1036.13017

[PP2] P. Popescu-Pampu Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles (2001) (Thèse de Doctorat, Université de Paris 7)

[Re] J.E. Reeve A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55), Volume 14, pp. 159-187 | Zbl 0067.12904

[St] B. Sturmfels Gröbner Bases and Convex Polytopes, University Lecture Series, Volume Vol 8, American Mathematical Society, 1996 | MR 1363949 | Zbl 0856.13020

[T1] B. Teissier The monomial curve and its deformations. Appendix in [Z6]

[T2] B. Teissier; F.-V. Kuhlmann, S. Kuhlmann, M. Marshall eds. Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. (Fields Inst. Communications Ser.) Volume vol. II | Zbl 1061.14016

[V1] O. Villamayor Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4), Volume 22 (1989) no. 1, pp. 1-32 | Numdam | MR 985852 | Zbl 0675.14003

[V2] O. Villamayor On Equiresolution and a question of Zariski, Acta Math, Volume 185 (2000), pp. 123-159 | Article | MR 1794188 | Zbl 0989.32004

[W] R.J. Walker Reduction of the Singularities of an Algebraic Surface, Annals of Maths, Volume 36 (1935) no. 2, pp. 336-365 | Article | JFM 61.0705.02 | MR 1503227

[Wa] C.T.C. Wall Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana, Volume 19 (2003), pp. 1-10 | MR 2023205 | Zbl 1057.14032

[Z1] O. Zariski Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques, Volume 78 (1954), pp. 31-40 | MR 62474 | Zbl 0055.38802

[Z2] O. Zariski The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz) (1955), pp. 182-188 | Zbl 0087.35601

[Z3] O. Zariski Studies in Equisingularity. I., Amer. J. Math., Volume 87 (1965), pp. 507-536 | MR 177985 | Zbl 0132.41601

[Z3] O. Zariski Studies in equisingularity. II., Amer. J. Math., Volume 87 (1965), pp. 972-1006 | MR 191898 | Zbl 0146.42502

[Z5] O. Zariski Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8), Volume 43 (1967), pp. 135-146 | MR 229648 | Zbl 0168.18903

[Z4] O. Zariski; Edizioni Cremonese Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969) (1970), pp. 261-343 | Zbl 0204.54503

[Z3] O. Zariski Collected Papers Volume IV (1979)

[Z4] O. Zariski Collected papers Volume IV (1979)

[Z5] O. Zariski Collected papers Volume I (1979)

[Z6] O. Zariski Le problème des modules pour les branches planes, Hermann, Paris, 1986 | MR 861277 | Zbl 0592.14010