Analytic cohomology of complete intersections in a Banach space
Annales de l'Institut Fourier, Volume 54 (2004) no. 1, p. 147-158
Let X be a Banach space with a countable unconditional basis (e.g., X= 2 ), ΩX an open set and f 1 ,...,f k complex-valued holomorphic functions on Ω, such that the Fréchet differentials df 1 (x),...,df k (x) are linearly independant over at each xΩ. We suppose that M={xΩ:f 1 (x)=...=f k (x)=0} is a complete intersection and we consider a holomorphic Banach vector bundle EM. If I (resp.𝒪 E ) denote the ideal of germs of holomorphic functions on Ω that vanish on M (resp. the sheaf of germs of holomorphic sections of E), then the sheaf cohomology groups H q (Ω,I), H q (M,𝒪 E ) vanish for all q1.
On démontre par exemple que dans un espace de Hilbert séparable au-dessus d’une intersection complète lisse M tous les fibrés vectoriels holomorphes sont acycliques, et le faisceau idéal de M est au-dessus des voisinages pseudoconvexes ouverts de M assez petit.
DOI : https://doi.org/10.5802/aif.2013
Classification:  32L20,  32L10,  46G20
Keywords: analytic cohomology, complete intersections
@article{AIF_2004__54_1_147_0,
     author = {Patyi, Imre},
     title = {Analytic cohomology of complete intersections in a Banach space},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {1},
     year = {2004},
     pages = {147-158},
     doi = {10.5802/aif.2013},
     zbl = {1080.32017},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_1_147_0}
}
Patyi, Imre. Analytic cohomology of complete intersections in a Banach space. Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 147-158. doi : 10.5802/aif.2013. http://www.numdam.org/item/AIF_2004__54_1_147_0/

[DG] F. Docquier; H. Grauert Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann, Tome 140 (1960), pp. 94-123 | MR 148939 | Zbl 0095.28004

[L1] L. Lempert The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc, Tome 11 (1998), pp. 485-520 | MR 1603858 | Zbl 0904.32014

[L2] L. Lempert The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc, Tome 12 (1999), pp. 775-793 | MR 1665984 | Zbl 0926.32048

[L3] L. Lempert The Dolbeault complex in infinite dimensions III, Invent. Math, Tome 142 (2000), pp. 579-603 | MR 1804162 | Zbl 0983.32010

[L4] L. Lempert Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble), Tome 49 (1999) no. 4, pp. 1293-1304 | Numdam | MR 1703089 | Zbl 0944.46046

[L5] L. Lempert Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 2, pp. 423-442 | Numdam | MR 1775356 | Zbl 0969.46032

[L6] L. Lempert Analytic cohomology in Fréchet spaces (Communications in Analysis and Geometry, to appear) | MR 2016194 | Zbl 1085.46031

[L7] L. Lempert Plurisubharmonic domination (J. Amer. Math. Soc., to appear) | MR 2051614 | Zbl 1042.32013

[L8] L. Lempert Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., to appear | MR 2128298 | Zbl 1089.32011

[P1] I. Patyi On the ¯-equation in a Banach space, Bull. Soc. Math. France, Tome 128 (2000), pp. 391-406 | Numdam | MR 1792475 | Zbl 0967.32036

[P2] I. Patyi Analytic cohomology vanishing in infinite dimensions (2000) (Ph. D. Thesis, Purdue University)

[P3] I. Patyi On a splitting problem, Bull. Sci. Math, Tome 126 (2002), pp. 631-636 | MR 1944389 | Zbl 1017.46029

[P4] I. Patyi On the Oka principle in a Banach space I, Math. Ann, Tome 326 (2003), pp. 417-441 | MR 1992271 | Zbl 1044.32018

[P5] I. Patyi On the Oka principle in a Banach space II, Math. Ann, Tome 326 (2003), pp. 443-458 | MR 1992271 | Zbl 1045.32023

[P6] I. Patyi Cohomological characterization of pseudoconvexity in a Banach space, Math. Z, Tome 245 (2003), pp. 371-386 | MR 2013505 | Zbl 1040.32028