Orbifolds, special varieties and classification theory  [ Orbifoldes, variétés spéciales et théorie de la classification ]
Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 499-630.

Le présent article décrit à l’aide de fibrations fonctorielles intrinsèques, la structure géométrique (et conjecturalement la pseudométrique de Kobayashi ainsi que l’arithmétique dans le cas projectif) des variétés Kählériennes compactes. Les variétés spéciales sont tout d’abord définies comme étant les variétés Kählériennes compactes ne possédant pas d’application méromorphe surjective sur une orbifolde de type général, la structure d’orbifolde de la base provenant du diviseur des fibres multiples. On montre que les variétés Kählériennes compactes qui sont, soit rationnellement connexes, soit à dimension de Kodaira nulle sont spéciales. Nous construisons ensuite fonctoriellement, pour toute telle variété X, l’ unique fibration c X :XC(X) (le coeur de X) dont les fibres sont spéciales et dont la base orbifolde est soit de type général, soit un point (ce dernier cas se produisant si et seulement si X est spéciale). Le coeur de X est ensuite canoniquement décomposé comme une tour de fibrations à fibres soit κ-rationnellement engendrées (une version faible de la connéxité rationnelle), soit à dimension de Kodaira nulle. En particulier, les variétés spéciales sont donc de telles tours de fibrations. L’ingrédient technique essentiel des démonstrations est une version orbifolde de la conjecture C n,m d’Iitaka, établie lorsque la base orbifolde est de type général. Le coeur de X permet de donner une description qualitative conjecturale très simple de la pseudométrique de Kobayashi de X et de la distribution de ses points K-rationnels (si X est projective, définie sur le corps K de type fini sur ), description se réduisant à celle de Lang lorsque X est de type général.

This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler manifolds or Kähler manifolds with zero Kodaira dimension are special. For any X, we then construct the unique functorial fibration c X :XC(X) (called its core), such that its general fibre is special, and its orbifold base is either of general type, or a point (the last case occuring if and only if X is special). We next show that the core has a canonical and functorial decomposition as a tower of fibrations with generic (orbifold) fibres either κ-rationally generated (a weak version of rational connectedness), or with zero Kodaira dimension. In particular, special manifolds are thus canonically towers of such fibrations. The main technical ingredient in the proofs is an orbifold version of Iitaka’s C n,m additivity conjecture, proved here when the orbifold base is of general type. The core of X also gives a very simple conjectural qualitative of description of both the Kobayashi pseudometric and the distribution of its K-rational points (if X is projective), description which reduces to Lang’s conjectures when X is of general type.

DOI : https://doi.org/10.5802/aif.2027
Classification : 14C30,  14D10,  14E05,  14G05,  14J40,  32J27,  32Q15,  32Q57
Mots clés : fibré canonique, dimension de Kodaira, orbifolde, variété Kählérienne compacte, connexité rationnelle, fibration, morphisme d'Albanese, pseudométrique de Kobayashi, points rationnels.
@article{AIF_2004__54_3_499_0,
     author = {Campana, Fr\'ed\'eric},
     title = {Orbifolds, special varieties and classification theory},
     journal = {Annales de l'Institut Fourier},
     pages = {499--630},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {3},
     year = {2004},
     doi = {10.5802/aif.2027},
     zbl = {1062.14014},
     mrnumber = {2097416},
     language = {en},
     url = {archive.numdam.org/item/AIF_2004__54_3_499_0/}
}
Campana, Frédéric. Orbifolds, special varieties and classification theory. Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 499-630. doi : 10.5802/aif.2027. http://archive.numdam.org/item/AIF_2004__54_3_499_0/

[A-N99] D. Arapura; M. Nori Solvable Fundamental Groups of Algebraic Varieties and Kähler Manifolds, Comp. Math., Volume 116 (1999), pp. 173-193 | MR 1686777 | Zbl 0971.14020

[Ab97] D. Abramovich Lang's map and Harris conjecture, Isr. J. Math., Volume 101 (1997), pp. 85-91 | MR 1484870 | Zbl 0933.14002

[B-F 93] J. Bingener; H. Flenner; V. Ancona and A. Silva Eds. On the fibers of analytic mappings, Complex Analysis and Geometry (1993), pp. 45-102 | Zbl 0792.13005

[B-L00] G. Buzzard; S. Lu Algebraic surfaces holomorphically dominable by 𝒞 2 , Inv. Math., Volume 139 (2000) no. 3, pp. 617-659 | MR 1738063 | Zbl 0967.14025

[B-P-V84] W. Barth; C. Peters; A. Van de Ven Compact Complex Surfaces, Erg. der Math. u. Ihrer Grenzgebiete. 3 Folge, Volume Band 4, Springer Verlag, 1984 | MR 749574 | Zbl 0718.14023

[B-T02] F.A. Bogomolov; Y. Tschinkel Special Elliptic Fibrations (e-print, math.AG/0303044)

[B-T00] F.A. Bogomolov; Y. Tschinkel Density of rational points on elliptic K3 surfaces, Asian Math. J., Volume 4 (2000), pp. 351-368 | MR 1797587 | Zbl 0983.14008

[Ba75] D. Barlet Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique de dimension finie, LNM, Volume 482 (1975), pp. 1-158 | MR 399503 | Zbl 0331.32008

[Be89] A. Beauville Annulation du H 1 pour les fibrés en droites plats, Proceedings Bayreuth 1989 (LNM) Volume 1507 (1992), pp. 1-15 | Zbl 0792.14006

[Bl26] S. Bloch Sur les systèmes de fonctions uniformes satisfaisant l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension, J. Math. Pures et Appliquées, Volume 5 (1926), pp. 19-66 | JFM 52.0373.04

[Bo79] F.A. Bogomolov Holomorphic Tensors and vector Bundles on Projective Varieties, Math. USSR. Izv., Volume 13 (1979), pp. 499-555 | Zbl 0439.14002

[Br00] M. Brunella Courbes entières dans les surfaces algébriques complexes, Séminaire Bourbaki, Volume Exposé 881 (Novembre 2000) | Numdam | Zbl 1031.14014

[C-P00] F. Campana; T. Peternell Complex Threefolds with Non-trivial holomorphic 2-Forms, J. Alg. Geom., Volume 9 (2000), pp. 223-264 | MR 1735771 | Zbl 0994.32016

[C-Z99] F. Campana; Q. Zhang Kähler threefolds covered by 𝒞 3 (1999) (Preprint)

[Ca01'] F. Campana Special Varieties and Classification Theory (e-print, math AG/0110051)

[Ca80] F. Campana Réduction algébrique d'un morphisme faiblement Kählérien propre et applications, Math. Ann., Volume 256 (1980), pp. 157-189 | MR 620706 | Zbl 0461.32010

[Ca81] F. Campana Coréduction algébrique d'un espace analytique faiblement Kählérien compact, Inv. Math., Volume 63 (1981), pp. 187-223 | MR 610537 | Zbl 0436.32024

[Ca85] F. Campana Réduction d'Albanese d'un morphisme faiblement Kählérien propre et applications I, II, Comp. Math., Volume 54 (1985), pp. 373-416 | Numdam | MR 791507 | Zbl 0609.32008

[Ca92] F. Campana An application of twistor theory to the non-hyperbolicity of certain compact symplectic Kähler manifolds, J. Reine. Angew. Math, Volume 425 (1992), pp. 1-7 | MR 1151311 | Zbl 0738.53037

[Ca92'] F. Campana Connexité rationnelle des variétés de Fano, Ann. Sc. ENS., Volume 25 (1992), pp. 539-545 | Numdam | MR 1191735 | Zbl 0783.14022

[Ca94] F. Campana Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F, Volume 122 (1994) no. 2, pp. 255-284 | Numdam | MR 1273904 | Zbl 0810.32013

[Ca95] F. Campana Fundamental Group and Positivity Properties of Cotangent Bundles of Compact Kähler Manifolds, J. Alg. Geom., Volume 4 (1995), pp. 487-505 | MR 1325789 | Zbl 0845.32027

[Ca98] F. Campana Negativity of compact curves in infinite étale covers of projective surfaces, J. Alg. Geom., Volume 7 (1998), pp. 673-693 | MR 1642728 | Zbl 0951.14009

[Ca01] F. Campana 𝒢-connectedness of compact Kähler manifolds. I., Contemp. Math., Volume 241 (1999), pp. 85-96 | MR 1718138 | Zbl 0965.32021

[Ca01] F. Campana Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Alg. Geom., Volume 10 (2001), pp. 599-622 | MR 1838973 | Zbl 01701988

[Ca03] F. Campana Special Varieties and Classification Theory: An overview, Acta Applicandae Mathematicae, Volume 75 (2003), pp. 29-49 | MR 1975557 | Zbl 1059.14047

[Ca04] F. Campana Orbifolds, special varieties and classification theory: appendix., Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 631-665 | Numdam | MR 2097417 | Zbl 1062.14015

[Co82] D. Cox Mordell-Weil groups of elliptic curves over C(t) with p g =0, or 1, Duke Math. J., Volume 49 (1982), pp. 677-689 | MR 672502 | Zbl 0503.14018

[CT86] J. L. Colliot-Thélène Arithmétique des variétés rationnelles et problèmes birationnels, Proc. ICM Berkeley (1986), pp. 641-653 | MR 934267 | Zbl 0698.14060

[CT-S-S97] J. L. Colliot-Thélène; A. Skorobogatov; P. Swinnerton-Dyer Double fibers and double covers: paucity in rational points, Acta Arithm., Volume 79 (1997), pp. 113-135 | MR 1438597 | Zbl 0863.14011

[D-E00] J.-P. Demailly; J. El Goul Hyperbolicity of generic hypersurfaces in the projective 3-space, Amer. J. Math., Volume 122 (2000), pp. 515-546 | MR 1759887 | Zbl 0966.32014

[D-G95] H. Darmon; A. Granville On the equations z m =F(x,y) and Ax p +By q =Cz r , Bull. London Math. Soc., Volume 27 (1995), pp. 513-543 | MR 1348707 | Zbl 0838.11023

[D-L-S94] J.-P. Demailly; L. Lempert; B. Shiffman Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., Volume 76 (1994) no. 2, pp. 333-363 | MR 1302317 | Zbl 0861.32006

[D-P-S93] J.-P. Demailly; T. Peternell; M. Schneider Kähler manifolds with numerically effective Ricci class, Comp. Math., Volume 89 (1993) no. 2, pp. 217-240 | Numdam | MR 1255695 | Zbl 0884.32023

[D-P-S96] J.-P. Demailly; T. Peternell; M. Schneider Compact Kähler Manifolds with hermitian semipositive anticanonical bundle, Comp. Math., Volume 101 (1996), pp. 217-224 | Numdam | MR 1389367 | Zbl 1008.32008

[De01] O. Debarre Higher-Dimensional Algebraic Geometry, Universitext, Springer Verlag, 2001 | MR 1841091 | Zbl 0978.14001

[Es80] H. Esnault Classification des variétés de dimension 3 et plus, Séminaire Bourbaki, Volume Exposé 568 (1980/81) | Numdam | Zbl 0481.14013

[F78] T. Fujita On Kähler fibre spaces over curves, J. Math. Soc. Jap., Volume 30 (1978), pp. 779-794 | MR 513085 | Zbl 0393.14006

[F-M94] R. Friedman; J. Morgan Smooth Four-Manifolds and Complex Surfaces, Erg. der Mathem., Volume 27, Springer Verlag, 1994 | MR 1288304 | Zbl 0817.14017

[F-MK92] L. Fong; J. Mc; Kernan; J. Kollár Ed. Log Abundance For Surfaces, Flips And Abundance for Algebraic Threefolds (Astérisque) Volume 211 (1992), pp. 127-137 | Zbl 0807.14029

[Fa94] G. Faltings; W. Messing and V. Cristante Eds The general case of S. Lang's Conjecture, The Barsotti Symposium (1994), pp. 175-182 | Zbl 0823.14009

[Fu82] A. Fujiki On the Douady Space of a complex space in 𝒞, Publ. RIMS (1982)

[G-H-S01] T. Graber; M. Harris; J. Starr Families of rationally connected varieties (2001) (Preprint) | Zbl 1092.14063

[Gr60] H. Grauert Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. IHES, Volume 5 (1960), pp. 1-64 | Numdam | MR 121814 | Zbl 0100.08001

[Gr60] H. Grauert Berichtigung zu der Arbeit 'Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen', Publ. Math., Inst. Hautes Étud. Sci., Volume 16 (1963), p. 131-132 | Numdam | MR 185614 | Zbl 0113.29103

[Gr65] H. Grauert Mordell's Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenk\"orpern, Publ. Math. IHES, Volume 25 (1965), pp. 131-149 | Numdam | MR 222087 | Zbl 0137.40503

[Gr89] H. Grauert Jetmetriken und hyperbolische Geometrie, Math. Z., Volume 200 (1989), pp. 149-168 | MR 978291 | Zbl 0664.32020

[H-S00] M. Hindry; J. Silverman Diophantine Geometry: an Introduction, GTM, Volume 201, Springer-Verlag, 2000 | MR 1745599 | Zbl 0948.11023

[H-T00] J. Harris; Y. Tschinkel Rational points on quartics, Duke Math. J., Volume 104 (2000), pp. 477-500 | MR 1781480 | Zbl 0982.14013

[Ii72] S. Iitaka Genera and Classification of Algebraic Varieties, Sugaku, Volume 24 (1972), pp. 14-27 | MR 569689

[Ii73] S. Iitaka On Algebraic Varieties whose Universal covering Manifolds are Complex Affine 𝒞 3 -space, Number Theory, algebr. Geom., commut. Algebra in Honor of Yasuo Akizuki, Tokyo Kunikuniya, 1973 | Zbl 0271.14015

[K-M98] J. Kollár; S. Mori Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Volume 134 (1998) | MR 1658959 | Zbl 0926.14003

[K-M-M87] Y. Kawamata; K. Matsuda; K. Matsuki Introduction to the Minimal Model Problem, Adv. Studies in Pure Mathematics, Volume 10 (1987), pp. 283-360 | MR 946243 | Zbl 0672.14006

[K-M-M92] J. Kollár; Y. Miyaoka; S. Mori Rationally connected Varieties, J. Alg. Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR 1158625 | Zbl 0780.14026

[K-MK97] S. Keel; S. McKiernan Rational curves on quasi-projective surfaces, Memoirs AMS, Volume 669 (1999) | Zbl 0955.14031

[K-O75] S. Kobayashi; T. Ochiai Meromorphic mappings into compact complex spaces of general type, Inv. Math., Volume 31 (1975), pp. 7-16 | MR 402127 | Zbl 0331.32020

[K-V80] Y. Kawamata; E. Viehweg On a characterization of an Abelian Variety, Comp. Math., Volume 41 (1980), pp. 355-359 | Numdam | MR 589087 | Zbl 0417.14033

[Ka80] Y. Kawamata On Bloch's Conjecture, Inv. Math., Volume 57 (1980), pp. 97-100 | MR 564186 | Zbl 0569.32012

[Ka81] Y. Kawamata Characterization of Abelian Varieties, Comp. Math. (1981), pp. 253-276 | Numdam | MR 622451 | Zbl 0471.14022

[Ka86] V.A. Kaimanovitch Brownian Motion and Harmonic Functions on Covering Manifolds. An Entropy Approach., Sov. Math. Dokl., Volume 33 (1986), pp. 812-816 | Zbl 0615.60074

[Ka99] Y. Kawamata Pluricanonical Forms, Contemp. Math., Volume 241 (1999), pp. 193-209 | MR 1718145 | Zbl 0972.14005

[Ko76] S. Kobayashi Intrinsic distances, measures and geometric function theory, Bull. AMS, Volume 82 (1976), pp. 357-416 | MR 414940 | Zbl 0346.32031

[Ko86] J. Kollár Higher direct image sheaves of dualising sheaves, Ann. Math., Volume 123 (1986), pp. 11-42 | MR 825838 | Zbl 0598.14015

[Ko93] J. Kollár Shafarevitch maps and plurigenera of Algebraic Varieties, Inv. Math., Volume 113 (1993), pp. 177-215 | MR 1223229 | Zbl 0819.14006

[Ko96] J. Kollár Rational curves on Algebraic varieties, Erg. der Math. und ihrer Grenz, Volume 32, Springer Verlag, 1996 | MR 1440180 | Zbl 0877.14012

[Ko98] S. Kobayashi Hyperbolic complex spaces, Grundlehren der Math. Wiss., Volume 318, Springer Verlag, 1998 | MR 1635983 | Zbl 0917.32019

[L-N59] S. Lang; A. Néron Rational points of Abelian Varieties over Function Fields, Amer. J. Math., Volume 81 (1959), pp. 95-118 | MR 102520 | Zbl 0099.16103

[L-S75] D. Liebermann; E. Sernesi Semi-continuity of Kodaira dimension, Bull. Amer. Math. Soc., Volume 81 (1975), p. 459-460 | Zbl 0308.14002

[La86] S. Lang Hyperbolic and Diophantine Analysis, Bull. AMS, Volume 14 (1986), pp. 159-205 | MR 828820 | Zbl 0602.14019

[La91] S. Lang Number Theory III: Diophantine Geometry, EMS, Volume vol. 60, Springer Verlag, 1991 | MR 1112552 | Zbl 0744.14012

[Li75] D. Liebermann; F. Norguet Ed. Compactness of the Chow Scheme : Applications to automorphisms and deformations of Kähler Manifolds (Lecture Notes in Mathematics) Volume 670 (1975), pp. 140-186 | Zbl 0391.32018

[Lu01] S. Lu Multiply marked Riemann surfaces and the Kobayashi pseudometric on Algebraic manifolds, Preprint (2001)

[Ma63] Y. Manin Rational Points of Algebraic Curves over Function Fields, Izv. Akad. Nauk. SSSR, Volume 27 (1963), pp. 737-756 | MR 157971 | Zbl 0178.55102

[Ma83] K. Maehara A finiteness Property of Varieties of General Type, Math. Ann., Volume 262 (1983), pp. 101-123 | MR 690010 | Zbl 0438.14011

[Mi88] Y. Miyaoka On the Kodaira Dimension of Minimal Threefolds, Math. Ann., Volume 281 (1988), pp. 325-332 | MR 949837 | Zbl 0625.14023

[Mo70] B. Moishezon Algebraic Varieties and Compact Complex Spaces, Actes du Congrès International des Mathématiciens, Nice, Volume Vol. 2 (1970), pp. 643-648 | MR 425189 | Zbl 0232.14004

[Mo88] S. Mori Flip Theorem and the existence of Minimal Models for Threefolds, J. AMS, Volume 1 (1988), pp. 117-253 | MR 924704 | Zbl 0649.14023

[Mo92] N. Mok Factorisation of Semi-Simple Discrete Representations of Kähler Groups, Inv. Math., Volume 110 (1992), pp. 557-614 | Zbl 0823.53051

[Mo95] A. Moriwaki Geometric Height inequality on Varieties with ample cotangent bundle, J. Alg. Geom., Volume 4 (1995) no. 2, pp. 385-396 | MR 1311357 | Zbl 0873.14029

[Na87] M. Namba Branched Coverings and Algebraic Functions, Pitman Research Notes, Volume 161, Longman Sc. and Tech., 1987 | MR 933557 | Zbl 0706.14017

[Na98] N. Nakayama Invariance of Plurigenera of algebraic Varieties (1998) (RIMS Preprint) | MR 1660941

[Nog76] J. Noguchi Holomorphic mappings into closed Riemann Surfaces, Hiroshima Math. J., Volume 6 (1976), pp. 281-291 | MR 422695 | Zbl 0338.32017

[Oc77] T. Ochiai On holomorphic curves in algebraic varieties with ample irregularity, Inv. Math., Volume 26 (1976), pp. 83-96 | MR 473237 | Zbl 0374.32006

[Pa68] A. N. Parshin Algebraic Curves over Function Fields, Math. USSR Izv., Volume 2 (1968), pp. 1145-1170 | Zbl 0188.53003

[Pa98] M. Paun Sur les variétés Kählériennes compactes à classe de Ricci nef, Bull. Sci. Math., Volume 122 (1998), pp. 83-92 | MR 1613763 | Zbl 0946.53037

[Pe01] E. Peyre Oral communication (July 2001)

[R 74] M. Raynaud Flat Modules in algebraic geometry, Comp. Math., Volume 24 (1972), pp. 11-31 | Numdam | MR 302645 | Zbl 0244.14001

[S-V86] A. Sommese; A. Van de Ven Homotopy of Pullback of Varieties, Nagoya Math. J., Volume 102 (1986), pp. 79-90 | MR 846130 | Zbl 0564.14010

[SD69] H. Swinnerton-Dyer Applications of Algebraic Geometry to number Theory, Proc. Symp. Pure Math., Volume XX (1969), pp. 1-52 | MR 337951 | Zbl 0228.14001

[SGAN 82] D. Barlet; F. Campana; C. Sabbah Séminaire: Géometrie Analytique (Deuxième partie) (1982) (Prépublication de l'Institut Elie Cartan, 5)

[Sh92] V. Shokurov 3-fold log-flips, Izv. Akad. Nauk. Ser. Mat., Volume 56 (1992), pp. 105-203 | MR 1162635

[Si82] Y.T. Siu Complex Analyticity of Harmonic Maps, J. Diff. Geom., Volume 17 (1982), pp. 55-138 | MR 658472 | Zbl 0497.32025

[Si98] Y.T. Siu Invariance of Plurigenera, Inventiones Math., Volume 134 (1998), pp. 661-673 | MR 1660941 | Zbl 0955.32017

[Si02] Y.T. Siu Extension of Pluricanonical Sections with Plurisubharmonic Weights, "Complex Geometry", a collection of papers dedicated to H. Grauert., Springer Verlag, 2003

[Sim93] C. Simpson Subspaces of Moduli Spaces of Rank One Local Systems, Ann. Sc. ENS., Volume 26 (1993), pp. 361-401 | Numdam | MR 1222278 | Zbl 0798.14005

[Ue75] K. Ueno Classification Theory of Algebraic Varieties and Compact Complex Manifolds, LNM, Volume 439, Springer Verlag, 1975 | MR 506253 | Zbl 0299.14007

[Vi82] E. Viehweg Die Additivität der Kodaira Dimension für Projektive Faserräume über Varietäten des Allgemeinen Typs, J. Reine Angew. Math., Volume 330 (1982), pp. 132-142 | MR 641815 | Zbl 0466.14009

[Vi83] E. Viehweg Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces (Adv. Stud. Pure Math.) Volume Vol. I (1983), pp. 329-353 | Zbl 0513.14019

[Vi86] E. Viehweg Vanishing theorems and and positivity of Algebraic fibre spaces, J. Proc. Int. Congr. Math. Berkeley (1986) | Zbl 0685.14013

[Vo 02] C. Voisin Intrinsic Pseudovolume Forms (2002) (Preprint)

[Zh96] Q. Zhang On projective manifolds with nef anticanonical bundles, J. Reine. Angew. Math., Volume 478 (1996), pp. 57-60 | MR 1409052 | Zbl 0855.14007

[Zu97] K. Zuo Factorisation theorems for representations of fundamental groups of algebraic varieties (1997) (Preprint Kaiserslautern)

[Zu97] K. Zuo Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, Volume 1708, Springer Verlag, 1999 | MR 1738433 | Zbl 0987.14014