Sequence entropy pairs and complexity pairs for a measure
Annales de l'Institut Fourier, Volume 54 (2004) no. 4, p. 1005-1028
In this paper we explore topological factors in between the Kronecker factor and the maximal equicontinuous factor of a system. For this purpose we introduce the concept of sequence entropy n-tuple for a measure and we show that the set of sequence entropy tuples for a measure is contained in the set of topological sequence entropy tuples [H- Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we introduce a weak notion and a strong notion of complexity pair for a measure. We prove that in general the strongest notion is strictly contained in between sequence entropy pairs and topological complexity pairs.
Dans cet article, nous étudions des facteurs topologiques entre le facteur de Kronecker et le facteur équicontinu maximal d’un système dynamique. Nous introduisons la notion de n-tuple d’entropie séquentielle pour une mesure et nous prouvons que l’ensemble n- tuple d’entropie sequentielle pour une mesure est contenu dans l’ensemble de n-tuple d’entropie séquentielle topologique [H-Y]. La réciproque est fausse. Aussi en suivant les idées dans [BHM], nous introduisons une notion faible et une notion forte de paire de complexité pour une mesure. Nous prouvons que la notion forte est strictement contenue entre la notion de paire d’entropie et de paire de complexité topologique.
Classification:  54H20
Keywords: sequential entropy, complexity
     author = {Huang, Wen and Maass, Alejandro and Ye, Xiangdong},
     title = {Sequence entropy pairs and complexity pairs for a measure},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {4},
     year = {2004},
     pages = {1005-1028},
     doi = {10.5802/aif.2041},
     zbl = {1083.37006},
     mrnumber = {2111019},
     language = {en},
     url = {}
Huang, Wen; Maass, Alejandro; Ye, Xiangdong. Sequence entropy pairs and complexity pairs for a measure. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 1005-1028. doi : 10.5802/aif.2041.

[B-R] F. Blanchard; B. Host; A. Maass; S. Martínez; D. Rudolph Entropy pairs for a measure, Ergod. Th. and Dynam. Sys, Tome 15 (1995), pp. 621-632 | MR 1346392 | Zbl 0833.58022

[B1] F. Blanchard Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications, AMS Contemporary Mathematics, Tome 135 (1992), pp. 95-105 | MR 1185082 | Zbl 0783.54033

[B2] F. Blanchard A disjointness theorem involving topological entropy, Bull. de la Soc. Math. de France, Tome 121 (1993), pp. 465-478 | Numdam | MR 1254749 | Zbl 0814.54027

[Be] V. Bergelson Ergodic Ramsey theory -- an update, Ergodic theory of d actions (Warwick, 1993-1994), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Notes Ser.) Tome 228 (1996), pp. 1-61 | Zbl 0846.05095

[BGH] F. Blanchard; E. Glasner; B. Host Variations on the variational principle, Ergod. Th. and Dynam. Sys, Tome 17 (1997), pp. 29-53 | MR 1440766 | Zbl 0868.54033

[BGKM] F. Blanchard; E. Glasner; S. Kolyada; A. Maass On Li-Yorke pairs, Journal für die reine und angewandte Mathematik, Tome 547 (2002), pp. 51-68 | MR 1900136 | Zbl 1059.37006

[BHM] F. Blanchard; B. Host; A. Maass Topological complexity, Ergod. Th. and Dynam. Sys, Tome 20 (2000), pp. 641-662 | MR 1764920 | Zbl 0962.37003

[BL] F. Blanchard; Y. Lacroix Zero-entropy factors of topological flows, Proc. Amer. Math. Soc, Tome 119 (1993), pp. 85-992 | MR 1155593 | Zbl 0787.54040

[DGS] M. Denker; C. Grillenberger; C. Sigmund Ergodic theory on compact spaces, Springer-Verlag, New York, Lecture Notes in Math, Tome 527 | Zbl 0328.28008

[F] H. Furstenberg Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Math. System Th., Tome 1 (1967), pp. 1-55 | MR 213508 | Zbl 0146.28502

[Fe] S. Ferenczi Measure-theoretic complexity of ergodic systems, Israel J. Math, Tome 100 (1997), pp. 189-207 | MR 1469110 | Zbl 01062362

[G] T.N.T Goodman Topological sequence entropy, Proc. London Math. Soc, Tome 29 (1974), pp. 331-350 | MR 356009 | Zbl 0293.54043

[G1] E. Glasner A simple characterization of the set of μ-entropy pairs and applications, Israel J. Math, Tome 102 (1997), pp. 13-27 | MR 1489099 | Zbl 0909.54035

[G2] E. Glasner Ergodic theory via joinings, Mathematical Surveys and Monographs, Tome 101 (2003) | MR 1958753 | Zbl 1038.37002

[GW] E. Glasner; B. Weiss Strictly ergodic, uniform positive entropy models, Bull. Soc. Math. France, Tome 122 (1994) no. 3, pp. 399-412 | Numdam | MR 1294463 | Zbl 0833.54022

[H-Y] W. Huang; S. Li; S. Shao; X. Ye Null systems and sequence entropy pairs, Ergod. Th. and Dynam. Sys, Tome 23-5 (2003), pp. 1505-1523 | MR 2018610 | Zbl 02061936

[Hu] P. Hulse Sequence entropy and subsequence generators, J. London Math. Soc, Tome 26 (1982), pp. 441-450 | MR 684558 | Zbl 0498.28022

[HY] W. Huang; X. Ye Topological K-systems, a thrid approach (2001) (preprint)

[Kr] L. Kronecker Naherrungsweise ganzzahlige Auflosunglinear Gleichungen, S.-B. Preuss (Akad. Wiss. Werke III(1)) Tome 1179-93, 1271-99, pp. 47-109

[Ku] A. G. Kushnirenko On metric invariants of entropy type, Russian Math. Surveys, Tome 22 (1967) no. 5, pp. 53-61 | MR 217257 | Zbl 0169.46101

[P] W. Parry Topics in Ergodic Theory, Cambridge-New York, Cambridge Tracks in Mathematics (1981) | MR 614142 | Zbl 0449.28016

[S] A. Saleski Sequence entropy and mixing, J. of Math. Anal. and Appli., Tome 60 (1977), pp. 58-66 | MR 450518 | Zbl 0368.28016

[W] B. Weiss Multiple recurrence and doubly minimal systems, AMS Contemporary Mathematics, Tome 215 (1998), pp. 189-196 | MR 1603185 | Zbl 0896.28005

[Wa] P. Walters An introduction to ergodic theory, Springer-Verlag, New York-Berlin, Graduate Texts in Mathematics, Tome 79 (1982) | MR 648108 | Zbl 0475.28009