Initial boundary value problem for the mKdV equation on a finite interval  [ Problème aux limites pour l'équation de Korteweg de Vries modifiée sur un intervalle borné ]
Annales de l'Institut Fourier, Tome 54 (2004) no. 5, p. 1477-1495
On analyse l’équation de «Korteweg-de Vries modifiée» sur un intervalle borné (0,L), avec conditions aux limites en t=0 et en x=0,L, en exprimant sa solution q(x,t) en termes de la solution d’un problème de Riemann-Hilbert associé. Ce problème est défini par des fonctions spectrales déterminées par les conditions aux limites. Nous explicitons la relation globale qui reflète en termes de ces fonctions spectrales la compatibilité des conditions aux limites.
We analyse an initial-boundary value problem for the mKdV equation on a finite interval (0,L) by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex k-plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at t=0 and x=0,L. We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral data.
DOI : https://doi.org/10.5802/aif.2056
Classification:  35Q53,  37K15,  35Q15,  34A55,  34L25
@article{AIF_2004__54_5_1477_0,
     author = {Boutet de Monvel-Berthier, Anne and Shepelsky, Dmitry},
     title = {Initial boundary value problem for the mKdV equation on a finite interval},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     pages = {1477-1495},
     doi = {10.5802/aif.2056},
     zbl = {02162431},
     mrnumber = {2127855},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_5_1477_0}
}
Boutet de Monvel, Anne; Shepelsky, Dmitry. Initial boundary value problem for the mKdV equation on a finite interval. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1477-1495. doi : 10.5802/aif.2056. https://www.numdam.org/item/AIF_2004__54_5_1477_0/

[1] A. Boutet De Monvel, A.S. Fokas & D. Shepelsky, The mKdV equation on the half-line, J. Inst. Math. Jussieu 3 (2004) p. 139-164 | MR 2055707 | Zbl 1057.35050

[2] A. Boutet De Monvel, A.S. Fokas & D. Shepelsky, Analysis of the global relation for the nonlinear Schrödinger equation on the half-line, Lett. Math. Phys 65 (2003) p. 199-212 | MR 2033706 | Zbl 1055.35107

[3] A. Boutet De Monvel & D. Shepelsky, The modified KdV equation on a finite interval, C. R. Math. Acad. Sci. Paris 337 (2003) p. 517-522 | MR 2017129 | Zbl 1044.35080

[4] A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London, Ser. A 453 (1997) p. 1411-1443 | MR 1469927 | Zbl 0876.35102

[5] A.S. Fokas, On the integrability of linear and nonlinear partial differential equations, J. Math. Phys 41 (2000) p. 4188-4237 | MR 1768651 | Zbl 0994.37036

[6] A.S. Fokas, Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London, Ser. A 457 (2001) p. 371-393 | MR 1848093 | Zbl 0988.35129

[7] A.S. Fokas, Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys 230 (2002) p. 1-39 | MR 1930570 | Zbl 1010.35089

[8] A.S. Fokas & A.R. Its, The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal 27 (1996) p. 738-764 | MR 1382831 | Zbl 0851.35122

[9] A.S. Fokas & A.R. Its, The nonlinear Schrödinger equation on the interval, Preprint | MR 2074625 | Zbl 1057.37063

[10] A.S. Fokas, A.R. Its & L.-Y. Sung, The nonlinear Schrödinger equation on the half-line, Preprint | MR 2150354 | Zbl 02201258

[12] X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal 20 (1989) p. 966-986 | MR 1000732 | Zbl 0685.34021

[13] X. Zhou, Inverse scattering transform for systems with rational spectral dependence, J. Differential Equations 115 (1995) p. 277-303 | MR 1310933 | Zbl 0816.35104

[11] V.E. Zakharov & A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974) p. 226-235 | Zbl 0303.35024

[11] V.E. Zakharov & A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering. II, Funct. Anal. Appl. 13 (1979) p. 166-174 | Zbl 0448.35090