On the index theorem for symplectic orbifolds
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, p. 1601-1639

We give an explicit construction of the trace on the algebra of quantum observables on a symplectiv orbifold and propose an index formula.

Nous donnons une construction explicite de la trace sur l'algèbre des observables quantiques sur une orbifolde symplectique et proposons une formule de l'indice.

DOI : https://doi.org/10.5802/aif.2061
Classification:  53D55,  37J10
@article{AIF_2004__54_5_1601_0,
     author = {Fedosov, Boris and Schulze, Bert-Wolfang and Tarkhanov, Nikolai},
     title = {On the index theorem for symplectic orbifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     pages = {1601-1639},
     doi = {10.5802/aif.2061},
     zbl = {1071.53055},
     mrnumber = {2127860},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_5_1601_0}
}
Fedosov, Boris; Schulze, Bert-Wolfang; Tarkhanov, Nikolai. On the index theorem for symplectic orbifolds. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1601-1639. doi : 10.5802/aif.2061. http://www.numdam.org/item/AIF_2004__54_5_1601_0/

[1] M. F. Atiyah, Elliptic operators and compact groups, Lect. Notes Math 401, Springer-Verlag, 1974 | MR 482866 | Zbl 0297.58009

[2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerovicz & D. Sternheimer, Deformation theory and quantization, Ann. Phys 111 (1978) p. 61-151 | Zbl 0377.53025

[3] L. Boutet De Monvel & V. Guillemin, The Spectral Theory of Toeplitz Operators, Princeton University Press, 1981 | MR 620794 | Zbl 0469.47021

[4] L. Charles, Aspects semi-classiques de la quantification géométrique, Thèse, Université Paris IX - Dauphine, Paris, 2000

[5] L. Charles, Spectral invariants of Toeplitz operators over symplectic two-dimensional orbifolds, Preprint, Università di Bologna, 2002

[6] J. Duistermaat, The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator, Birkhäuser, 1996 | MR 1365745 | Zbl 0858.58045

[7] F. Faure & B. Zhilinskii, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology?, Acta Applicandae Mathematicae 70 (2002) p. 265-282 | MR 1892384 | Zbl 01747783

[8] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom 40 (1994) p. 213-238 | MR 1293654 | Zbl 0812.53034

[9] B. Fedosov, Deformation Quantization and Index Theory, Akademie-Verlag, 1995 | MR 1389013 | Zbl 0867.58061

[10] B. Fedosov, On normal Darboux coordinates, Amer. Math. Soc. Transl 206 (2002) no.2 p. 81-93 | MR 1939488 | Zbl 1032.53065

[11] B. Fedosov, On the trace density in deformation quantization, Walter de Gruyter, 2002, p. 67-83 | Zbl 1014.53056

[12] B. Fedosov, On G-trace and G-index in deformation quantization, Lett. Math. Phys 52 (2000) p. 29-49 | MR 1800489 | Zbl 0998.53058

[13] T. Kawasaki, The index of elliptic operators over V-manifolds, Nagoya Math. J 84 (1981) p. 135-157 | MR 641150 | Zbl 0437.58020

[14] M. Pflaum, On the deformation quantization of symplectic orbispaces, To appear in Differential Geometry and its Applications, 2003 | MR 2013100 | Zbl 1055.53069

[15] M. Vergne, Equivariant index formula for orbifolds, Duke Math. J 82 (1996) p. 637-652 | MR 1387687 | Zbl 0874.57029