Introduction to magnetic resonance imaging for mathematicians
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, p. 1697-1716

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Nous introduisons les concepts et modèles de base en résonance magnétique nucléaire (RMN). Nous décrivons une expérience d'imagerie simple ainsi que la réduction du problème d'excitation sélective à un problème de scattering inverse.

Classification:  78A46,  81V35,  65R10,  65R32
     author = {Epstein, Charles L.},
     title = {Introduction to magnetic resonance imaging for mathematicians},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     pages = {1697-1716},
     doi = {10.5802/aif.2063},
     zbl = {02162438},
     mrnumber = {2127862},
     language = {en},
     url = {}
Epstein, Charles L. Introduction to magnetic resonance imaging for mathematicians. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1697-1716. doi : 10.5802/aif.2063.

[AKNS] M. Ablowitz, D. Kaup, A. Newell & H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math. 53 (1974) p. 249-315 | MR 450815 | Zbl 0408.35068

[Ab] A. Abragam, Principles of Nuclear Magnetism, Clarendon Press, 1983

[BC] R. Beals & R. Coifman, Scattering and inverse scattering for first order systems, CPAM 37 (1984) p. 39-90 | MR 728266 | Zbl 0514.34021

[Bl] F. Bloch, Nuclear induction, Phys. Review 70 (1946) p. 460-474

[Cal] P.T. Callaghan, Principles of nuclear magnetic resonance microscopy, Clarendon Press, 1993

[Ca1] J. Carlson, Exact solutions for selective-excitation pulses, J. Magn. Res. 94 (1991) p. 376-386

[Ca2] J. Carlson, Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res. 97 (1992) p. 65-78

[Ep] C.L. Epstein, Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res. 167 (2004) p. 185-210

[EBW] R. Ernst, G. Bodenhausen & A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Clarendon, 1987

[FT] L. Faddeev & L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, 1987 | MR 905674 | Zbl 0632.58004

[Gr1] F. Grünbaum, Trying to beat Heisenberg, Lecture Notes in Pure and Applied Math. vol. 122, Marcel Dekker, 1989, p. 657-666 | Zbl 0702.35199

[Gr2] F. Grünbaum, Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D 44 (1990) p. 92-98 | MR 1069673 | Zbl 0703.58053

[GH] F. Grünbaum & A. Hasenfeld, An exploration of the invertibility of the Bloch transform, Inverse Problems 2 (1986) p. 75-81 | MR 839981 | Zbl 0612.44005

[Ha] E.M. Haacke, R.W. Brown, M.R. Thompson & R. Venkatesan, Magnetic Resonance Imaging, Wiley-Liss, 1999

[Ho1] D. Hoult, The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res. 12 (2000) p. 173-187

[Ho2] D. Hoult, Sensitivity and power deposition in a high field imaging experiment, JMRI 12 (2000) p. 46-67

[Ma] J. Magland, Discrete Inverse Scattering Theory and NMR pulse design, PhD. Thesis, University of Pennsylvania, 2004

[Me] E. Merzbacher, Quantum Mechanics, 2nd ed., John Wiler \& Sons, 1970 | MR 260284 | Zbl 0102.42701

[PRNM] J. Pauly, P. Le Roux, D. Nishimura & A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991) p. 53-65

[MR] D.E. Rourke & P.G. Morris, The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res. 99 (1992) p. 118-138

[SL1] M. Shinnar & J. Leigh, The application of spinors to pulse synthesis and analysis, Magn. Res. in Med. 12 (1989) p. 93-98

[SL2] M. Shinnar & J. Leigh, Inversion of the Bloch equation, J. Chem. Phys. 98 (1993) p. 6121-6128

[To] H.C. Torrey, Bloch equations with diffusion terms, Phys. Review 104 (1956) p. 563-565