On the local behaviour of ordinary Λ-adic representations
Annales de l'Institut Fourier, Volume 54 (2004) no. 7, p. 2143-2162

Let f be a primitive cusp form of weight at least 2, and let ρ f be the p-adic Galois representation attached to f. If f is p-ordinary, then it is known that the restriction of ρ f to a decomposition group at p is “upper triangular”. If in addition f has CM, then this representation is even “diagonal”. In this paper we provide evidence for the converse. More precisely, we show that the local Galois representation is not diagonal, for all except possibly finitely many of the arithmetic members of a non-CM family of p-ordinary forms. We assume p is odd, and work under some technical conditions on the residual representation. We also settle the analogous question for p-ordinary Λ-adic forms, under similar conditions.

Soit f une forme parabolique primitive de poids au moins 2 et soit ρ f la représentation galoisienne p-adique associée à f. Si f est p-ordinaire, alors on sait que la restriction de ρ f au sous-groupe de décomposition en p est “triangulaire supérieure”. Si en plus f a multiplication complexe, alors cette représentation est même diagonale. Dans ce travail on étudie la réciproque. Plus précisément, on démontre que la représentation galoisienne locale n’est pas diagonale pour tous les éléments arithmétiques, sauf peut-être un nombre fini, d’une famille de formes p-ordinaires n’admettant pas de multiplication complexe. On suppose que p est impair et que la représentation galoisienne résiduelle vérifie certaines conditions techniques. On répond aussi à la question analogue pour des formes p- ordinaires Λ-adiques, sous des hypothèses similaires.

DOI : https://doi.org/10.5802/aif.2077
Classification:  11F80,  11F33,  11R23
Keywords: Λ-adic forms, p-adic families, ordinary primes, Galois representations
@article{AIF_2004__54_7_2143_0,
     author = {Ghate, Eknath and Vatsal, Vinayak},
     title = {On the local behaviour of ordinary $\Lambda $-adic representations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {7},
     year = {2004},
     pages = {2143-2162},
     doi = {10.5802/aif.2077},
     zbl = {1131.11341},
     mrnumber = {2139691},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_7_2143_0}
}
Ghate, Eknath; Vatsal, Vinayak. On the local behaviour of ordinary $\Lambda $-adic representations. Annales de l'Institut Fourier, Volume 54 (2004) no. 7, pp. 2143-2162. doi : 10.5802/aif.2077. http://www.numdam.org/item/AIF_2004__54_7_2143_0/

[BT99] K. Buzzard; R. Taylor Companion forms and weight one forms, Ann. of Math, Tome 149 (1999) no. 3, pp. 905-919 | Article | MR 1709306 | Zbl 0965.11019

[Buz03] K. Buzzard Analytic continuation of overconvergent eigenforms, J. Amer. Math. Soc, Tome 16 (2003) no. 1, pp. 29-55 | Article | MR 1937198 | Zbl 01832407

[Col96] R. Coleman Classical and overconvergent modular forms, Invent. Math, Tome 124 (1996), pp. 215-241 | Article | MR 1369416 | Zbl 0851.11030

[Gha04] E. Ghate On the local behaviour of ordinary modular Galois representations, Modular curves and abelian varieties, Birkhäuser (Progress in Mathematics) Tome volume 224 (2004), pp. 105-124 | Zbl 02164178

[Gha05] E. Ghate Ordinary forms and their local Galois representations (To appear) | Zbl 1085.11029

[GV03] R. Greenberg; V. Vatsal Iwasawa theory for Artin representations (To appear)

[Hid86a] H. Hida Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup, Tome 19 (1986) no. 2, pp. 231-273 | Numdam | MR 868300 | Zbl 0607.10022

[Hid86b] H. Hida Galois representations into GL 2 ( p [[X]]) attached to ordinary cusp forms, Invent. Math, Tome 85 (1986), pp. 545-613 | Article | MR 848685 | Zbl 0612.10021

[Hid93] H. Hida Elementary Theory of L-functions and Eisenstein Series, Cambridge University Press, Cambridge, LMSST, Tome 26 (1993) | MR 1216135 | Zbl 0942.11024

[Miy89] T. Miyake Modular forms, Springer Verlag (1989) | MR 1021004 | Zbl 05012868

[MT90] B. Mazur; J. Tilouine Représentations galoisiennes, différentielles de Kähler et ``conjectures principales'', Inst. Hautes Études Sci. Publ. Math, Tome 71 (1990), pp. 65-103 | Article | Numdam | MR 1079644 | Zbl 0744.11053

[MW86] B. Mazur; A. Wiles On p-adic analytic families of Galois representations, Compositio Math., Tome 59 (1986), pp. 231-264 | Numdam | MR 860140 | Zbl 0654.12008

[Ser89] J.-P. Serre Abelian l-adic representations and elliptic curves, Addison-Wesley Publishing Company, Redwood City, CA, Advanced Book Classics (1989) | MR 1043865 | Zbl 0709.14002

[Vat05] V. Vatsal A remark on the 23-adic representation associated to the Ramanujan Delta function (Preprint)

[Wil88] A. Wiles On ordinary λ-adic representations associated to modular forms, Invent. Math., Tome 94 (1988), pp. 529-573 | Article | MR 969243 | Zbl 0664.10013