Euler system for Galois deformations
Annales de l'Institut Fourier, Volume 55 (2005) no. 1, p. 113-146
In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the ideal associated to a Euler system even in the case of d p -extensions already treated by Kato, Perrin-Riou, Rubin.
Dans cet article, on obtient la généralisation de la théorie du système d’Euler pour les déformations galoisiennes. Si on applique ce résultat aux système d’Euler de Beilinson- Kato, on prouve une des inégalités prévues par la conjecture principale d’Iwasawa à deux variables. La clef de notre démonstration est l’utilisation de spécialisations non- arithmétiques. Notre méthode donne une nouvelle preuve plus simple de l’inégalité entre l’idéal caractéristique du groupe de Selmer d’une déformation galosienne et l’idéal associé à un système d’Euler, y compris dans le cas des -extensions déjà traité par Kato, Perrin-Riou, Rubin.
DOI : https://doi.org/10.5802/aif.2091
Classification:  11G40,  11R23,  11R34,  11F80,  11F33
Keywords: Euler system, Hida theory, Iwasawa Main conjecture
@article{AIF_2005__55_1_113_0,
     author = {Ochiai, Tadashi},
     title = {Euler system for Galois deformations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     pages = {113-146},
     doi = {10.5802/aif.2091},
     zbl = {02162466},
     mrnumber = {2141691},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_1_113_0}
}
Ochiai, Tadashi. Euler system for Galois deformations. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 113-146. doi : 10.5802/aif.2091. http://www.numdam.org/item/AIF_2005__55_1_113_0/

[BK] S. Bloch; K. Kato L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift I, Progress in Math., Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001

[Bo] N. Bourbaki Eléments de mathématique, Algèbre commutative, Chapitre 5--7 (1985) | MR 722608 | Zbl 0547.13002

[Bu] J.M. Fontaine (Éd.) Périodes p-adiques, Séminaire de Bures (1988) (Astérisque) Tome 223 (1994)

[De1] P. Deligne Formes modulaires et représentations -adiques, Springer Verlag, Séminaire Bourbaki 355, p. 139-172, Tome 179 (1969) | Numdam

[De2] P. Deligne Valeurs des fonctions L et périodes d'intégrales, Amer. Math. Soc. (Proc. Sympos. Pure Math.) Tome XXXIII, Part 2 (1979), pp. 247-289 | Zbl 0449.10022

[Fl] M. Flach A generalisation of Cassels-Tate pairing, J. reine angew. Math., Tome 412 (1990), pp. 113-127 | MR 1079004 | Zbl 0711.14001

[Gr1] R. Greenberg Iwasawa theory for p-adic representations, Advanced studies in Pure Math., Tome 17 (1987), pp. 97-137 | MR 1097613 | Zbl 0739.11045

[Gr2] R. Greenberg Iwasawa theory for p-adic deformations of motives, Proceedings of Symposia in Pure Math., Tome 55 (1994) no. 2, pp. 193-223 | MR 1265554 | Zbl 0819.11046

[GS] R. Greenberg; G. Stevens p-adic L-functions and p-adic periods of modular forms, Invent. Math., Tome 111 (1993) no. 2, pp. 407-447 | MR 1198816 | Zbl 0778.11034

[Hi1] H. Hida Galois representations into GL 2 ( p [[X]]) attached to ordinary cusp forms, Invent. Math., Tome 85 (1986), pp. 545-613 | Article | MR 848685 | Zbl 0612.10021

[Hi2] H. Hida Elementary theory of L-functions and Eisenstein series, Cambridge University Press, London Math. Society Student Texts, Tome 26 (1993) | MR 1216135 | Zbl 0942.11024

[Ka1] K. Kato; Springer Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR , I (Lecture Notes in Math.) Tome 1553 (1993), pp. 50-163 | Zbl 0815.11051

[Ka2] K. Kato Series of lectures on Iwasawa main conjectures for modular elliptic curves (1998) (given at Tokyo University)

[Ka3] K. Kato p-adic Hodge theory and values of zeta functions of modular forms (Preprint) | MR 2104361 | Zbl 02123616

[Ka4] K. Kato Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J., Tome 22 (1999) no. 3, pp. 313-372 | Article | MR 1727298 | Zbl 0993.11033

[Ki] K. Kitagawa On standard p-adic L-functions of families of elliptic cusp forms, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, p.81-110, Amer. Math. Soc., Contemp. Math., Tome 165 (1994) | MR 1279604 | Zbl 0841.11028

[Ma] H. Matsumura Commutative ring theory, Cambridge University Press, Cambridge Studies in Advanced Mathematics, Tome 8 (1986) | MR 879273 | Zbl 0603.13001

[Mi] J.S. Milne Arithmetic duality theorems,, Academic Press, Perspectives in Math. 1 (1986) | MR 881804 | Zbl 05081843

[MR] B. Mazur; K. Rubin Kolyvagin systems (2001) (Preprint) | MR 2031496

[MT] B. Mazur; J. Tilouine Représentations galoisiennes, différentielles de Kähler et ``conjectures principales", Inst. Hautes Études Sci. Publ. Math., Tome 71 (1990), pp. 65-103 | Article | Numdam | MR 1079644 | Zbl 0744.11053

[MW1] B. Mazur; A. Wiles Class fields of abelian extensions of , Invent. Math., Tome 76 (1984) no. 2, pp. 179-330 | Article | MR 742853 | Zbl 0545.12005

[MW2] B. Mazur; A. Wiles On p-adic analytic families of Galois representations, Compos. Math., Tome 59 (1986) no. 2, pp. 231-264 | Numdam | MR 860140 | Zbl 0654.12008

[NSW] J. Neukirch; A. Schmidt; K. Wingberg Cohomology of number fields, Springer-Verlag, Berlin, Grundlehren Math. Wiss., Tome 323 (2000) | MR 1737196 | Zbl 0948.11001

[Oc1] T. Ochiai Control theorem for Greenberg's Selmer groups for Galois deformations, J. Number Theory, Tome 88 (2001), pp. 59-85 | Article | MR 1825991 | Zbl 01598949

[Oc2] T. Ochiai A generalization of the Coleman map for Hida deformations, Amer. J. Math., Tome 125 (2003), pp. 849-892 | Article | MR 1993743 | Zbl 1057.11048

[Oc3] T. Ochiai On the two-variable Iwasawa Main conjecture for Hida deformations (in preparation)

[Pe] B. Perrin-Riou Systèmes d'Euler p-adiques et théorie d'Iwasawa, Ann. Inst. Fourier, Tome 48 (1998) no. 5, pp. 1231-1307 | Article | Numdam | MR 1662231 | Zbl 0930.11078

[Ru1] K. Rubin The ``main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math., Tome 103 (1991) no. 1, pp. 25-68 | Article | MR 1079839 | Zbl 0737.11030

[Ru2] K. Rubin Euler systems, Annals Math. Studies, Tome 147 (2000) | MR 1749177 | Zbl 0977.11001

[Se] J.-P. Serre Cohomologie galoisienne, 5th ed., Springer-Verlag (Lecture Notes in Math.) Tome 5 (1994) | Zbl 0812.12002

[Ta] J. Tate Relations between K 2 and Galois cohomology, Invent. Math., Tome 36 (1976), pp. 257-274 | Article | MR 429837 | Zbl 0359.12011

[Wi] A. Wiles On λ-adic representations associated to modular forms, Invent. Math., Tome 94 (1988), pp. 529-573 | Article | MR 969243 | Zbl 0664.10013