An obstruction to homogeneous manifolds being Kähler
Annales de l'Institut Fourier, Volume 55 (2005) no. 1, p. 229-241
Let G be a connected complex Lie group, H a closed, complex subgroup of G and X:=G/H. Let R be the radical and S a maximal semisimple subgroup of G. Attempts to construct examples of noncompact manifolds X homogeneous under a nontrivial semidirect product G=SR with a not necessarily G-invariant Kähler metric motivated this paper. The S-orbit S/SH in X is Kähler. Thus SH is an algebraic subgroup of S [4]. The Kähler assumption on X ought to imply the S-action on the base Y of any homogeneous fibration XY is algebraic too. Natural considerations allow a reduction to the case where H=Γ is a discrete subgroup and there is a homogeneous fibration X=G/ΓG/I=:Y with I an abelian, normal subgroup of G and the fiber I /(I Γ) a Cousin group. An algebraic condition does hold in the homogeneous manifold Y=G ^/Γ ^, where G ^:=G/I and Γ ^:=I/I , namely, an element g ^Γ ^ of infinite order lying in a semisimple subgroup S ^ of G ^ is an obstruction to the existence of a Kähler metric on X. So X Kähler implies S ^Γ ^ finite.
Soit G un groupe de Lie complexe, H un sous-groupe complexe fermé de G, et X:=G/H. Soit R le radical et S un sous-groupe semi-simple maximal de G. La construction d’exemples de variétés non compactes X homogènes d’un produit semi-direct G=SR, possédant une métrique kählérienne pas nécessairement invariante par G, a suscité ce travail. L’orbite S/SH de S dans X est kählérienne. Donc SH est un sous-groupe algébrique de S [4]. La présence d’une structure kählérienne sur X devrait impliquer que l’action de S sur la base Y de chaque fibration homogène XY soit algébrique. Des considérations naturelles permettent de se placer dans le cas d’un sous-groupe discret H=Γ et d’une fibration homogène X=G/ΓG/I=:Y, où le sous-groupe I est abélien et normal dans G et la fibre I /(I Γ) est un groupe de Cousin. Une telle condition algébrique existe alors dans cet espace homogène Y=G ^/Γ ^, où G ^:=G/I et Γ ^:=I/I . Ceci signifie que l’existence d’un élément g ^Γ ^ d’ordre infini appartenant à un sous-groupe semi-simple S ^ de G ^ est une obstruction à l’existence d’une métrique kählérienne sur X. Ainsi X kählérien implique que S ^Γ ^ fini.
Classification:  32M10,  32Q15
Keywords: homogeneous complex manifolds, Kähler manifolds
     author = {Gilligan, Bruce},
     title = {An obstruction to homogeneous manifolds being K\"ahler},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     pages = {229-241},
     doi = {10.5802/aif.2097},
     zbl = {1070.32017},
     mrnumber = {2141697},
     language = {en},
     url = {}
Gilligan, Bruce. An obstruction to homogeneous manifolds being Kähler. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 229-241. doi : 10.5802/aif.2097.

[1] Y. Abe; K. Kopfermann Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1759 (2001) | MR 1836462 | Zbl 0974.22004

[2] D. N. Akhiezer Invariant analytic hypersurfaces in complex nilpotent Lie groups, Ann. Global Anal. Geom., Tome 2 (1984), pp. 129-140 | Article | MR 777904 | Zbl 0576.32039

[3] D. N. Akhiezer; B. Gilligan On complex homogeneous spaces with top homology in codimension two, Canad. J. Math., Tome 46 (1994), pp. 897-919 | Article | MR 1295122 | Zbl 0812.32013

[4] F. Berteloot; K. Oeljeklaus Invariant plurisubharmonic functions and hypersurfaces on semi-simple complex Lie groups, Math. Ann., Tome 281 (1988), pp. 513-530 | Article | MR 954156 | Zbl 0653.32029

[5] A. Borel; R. Remmert Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., Tome 145 (1962), pp. 429-439 | Article | MR 145557 | Zbl 0111.18001

[6] P. Cousin Sur les fonctions triplement périodiques de deux variables, Acta Math., Tome 33 (1910), pp. 105-232 | Article | JFM 41.0492.02

[7] J. Dorfmeister; K. Nakajima The fundamental conjecture for homogeneous Kähler manifolds, Acta Math., Tome 161 (1988), pp. 23-70 | Article | MR 962095 | Zbl 0662.32025

[8] B. Gilligan Invariant analytic hypersurfaces in complex Lie groups, Bull. Austral. Math. Soc., Tome 70 (2004), pp. 343-349 | Article | MR 2094781 | Zbl 02131450

[9] B. Gilligan; A. Huckleberry On non-compact complex nil-manifolds, Math. Ann., Tome 238 (1978), pp. 39-49 | Article | MR 510305 | Zbl 0405.32009

[10] B. Gilligan; K. Oeljeklaus; W. Richthofer Homogeneous complex manifolds with more than one end, Canad. J. Math., Tome 41 (1989), pp. 163-177 | Article | MR 996723 | Zbl 0667.32022

[11] G. Hochschild; G.D. Mostow On the algebra of representative functions of an analytic group, II, Amer. J. Math., Tome 86 (1964), pp. 869-887 | Article | MR 200392 | Zbl 0152.01301

[12] A.T. Huckleberry; E. Oeljeklaus On holomorphically separable complex solvmanifolds, Ann. Inst. Fourier (Grenoble), Tome 36 (1986), pp. 57-65 | Article | Numdam | MR 865660 | Zbl 0571.32012

[13] Y. Matsushima On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J., Tome 2 (1951), pp. 95-110 | MR 41144 | Zbl 0045.31002

[14] A. Morimoto Non-compact complex Lie groups without non-constant holomorphic functions, Minneapolis (Proceedings of the Conference on Complex Analysis) (1964), pp. 256-272 | Zbl 0144.07902

[15] K. Oeljeklaus Hyperflächen und Geradenbündel auf homogenen komplexen Mannigfaltigkeiten (1985) (Schr. Reihe Math. Inst. Univ. Münster, Serie 2, Heft, 36 (Thesis)) | MR 819480 | Zbl 0594.32032

[16] K. Oeljeklaus; W. Richthofer On the structure of complex solvmanifolds, J. Differential Geom., Tome 27 (1988), pp. 399-421 | MR 940112 | Zbl 0619.32021

[17] K. Oeljeklaus; W. Richthofer; Springer Recent results on homogeneous complex manifolds, Complex Analysis III, Berlin (Lecture Notes in Math.) Tome 1277 (1987), pp. 78-119 | Zbl 0627.32026

[18] M.S. Raghunathan Discrete subgroups of Lie groups, New York (1972) | MR 507234 | Zbl 0254.22005