Cogrowth and spectral gap of generic groups
Annales de l'Institut Fourier, Volume 55 (2005) no. 1, p. 289-317

The cogrowth exponent of a group controls the random walk spectrum. We prove that for a generic group (in the density model) this exponent is arbitrarily close to that of a free group. Moreover, this exponent is stable under random quotients of torsion-free hyperbolic groups.

L'exposant de cocroissance d'un groupe contrôle le spectre de la marche aléatoire. Nous prouvons que pour un groupe générique (dans le modèle à densité) cet exposant est arbitrairement proche de celui du groupe libre. En outre, cet exposant est stable par quotient aléatoire d'un groupe hyperbolique sans torsion.

DOI : https://doi.org/10.5802/aif.2099
Classification:  20P05,  20F69,  20F06
Keywords: Random groups, cogrowth, hyperbolic groups, random walk on groups
@article{AIF_2005__55_1_289_0,
     author = {Ollivier, Yann},
     title = {Cogrowth and spectral gap of generic groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     pages = {289-317},
     doi = {10.5802/aif.2099},
     zbl = {02162474},
     mrnumber = {2141699},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_1_289_0}
}
Ollivier, Yann. Cogrowth and spectral gap of generic groups. Annales de l'Institut Fourier, Volume 55 (2005) no. 1, pp. 289-317. doi : 10.5802/aif.2099. http://www.numdam.org/item/AIF_2005__55_1_289_0/

[C] J.M. Cohen Cogrowth and Amenability of Discrete Groups, J. Funct. Anal., Tome 48 (1982), pp. 301-309 | Article | MR 678175 | Zbl 0499.20023

[Ch00] C. Champetier L'espace des groupes de type fini, Topology, Tome 39 (2000) no. 4, pp. 657-680 | Article | MR 1760424 | Zbl 0959.20041

[Ch93] C. Champetier Cocroissance des groupes à petite simplification, Bull. London Math. Soc., Tome 25 (1993) no. 5, pp. 438-444 | Article | MR 1233406 | Zbl 0829.20046

[Ch95] C. Champetier Propriétés statistiques des groupes de présentation finie, J. Adv. Math., Tome 116 (1995) no. 2, pp. 197-262 | MR 1363765 | Zbl 0847.20030

[GdlH] R.I. Grigorchuk; P. De La Harpe On problems related to growth, entropy, and spectrum in group theory, Dynam. Control Systems, Tome 3 (1997) no. 1, pp. 51-89 | Article | MR 1436550 | Zbl 0949.20033

[Gh] É. Ghys Groupes aléatoires (séminaire Bourbaki) Tome 916 (2003)

[Gri] R.I. Grigorchuk; R.L. Dobrushin, Ya.G. Sinai Symmetrical Random Walks on Discrete Groups, Dekker (Adv. Prob. Related Topics) Tome 6 (1980), pp. 285–325 | Zbl 0475.60007

[Gro03] M. Gromov Random Walk in Random Groups, Geom. Funct. Anal., Tome 13 (2003) no. 1, pp. 73-146 | Article | MR 1978492 | Zbl 01971826

[Gro87] M. Gromov; S.M. Gersten Hyperbolic Groups, Springer (Essays in group theory) (1987), pp. 75-265 | Zbl 0634.20015

[Gro93] M. Gromov Asymptotic Invariants of Infinite Groups, Cambridge University Press, Cambridge, Geometric group theory (1993) | MR 1253544

[HLS] N. Higson; V. Lafforgue; G. Skandalis Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal., Tome 12 (2002) no. 2, pp. 330-354 | Article | MR 1911663 | Zbl 1014.46043

[K] H. Kesten Symmetric Random Walks on Groups, Trans. Amer. Math. Soc., Tome 92 (1959), pp. 336-354 | Article | MR 109367 | Zbl 0092.33503

[LS] R.C. Lyndon; P.E. Schupp Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 89 (1977) | MR 577064 | Zbl 0368.20023

[Oll] Y. Ollivier Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal., Tome 14 (2004) no. 3, pp. 595-679 | MR 2100673 | Zbl 1064.20045

[Ols] A.Yu. Ol'Shanski\U\I Almost Every Group is Hyperbolic, Int. J. Algebra Comput., Tome 2 (1992) no. 1, pp. 1-17 | Article | MR 1167524 | Zbl 0779.20016

[P] F. Paulin Sur la théorie élémentaire des groupes libres, Séminaire Bourbaki, Tome 922 (2003)

[Sh] H. Short; Et Al., World Scientific, Group Theory from a Geometrical Viewpoint (1991)

[W] W. Woess Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, Tome 138 (2000) | MR 1743100 | Zbl 0951.60002