Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry
Annales de l'Institut Fourier, Volume 55 (2005) no. 3, p. 1017-1053
We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object.
Nous généralisons ici la théorie des sous-groupes déstabilisants optimaux à un paramètre dans un cadre non algébrique : celui des actions holomorphes de groupes de Lie complexes réductifs sur une variété kählerienne de dimension finie (compacte ou non). Dans une seconde partie, nous montrons comment ces résultats peuvent s'étendre dans le cadre de la théorie de jauge, nous explorons la relation entre filtration de Harder-Narasimhan et vecteur déstabilisant optimal d'un objet non semistable.
DOI : https://doi.org/10.5802/aif.2120
Classification:  32M05,  53D20,  14L24,  14L30,  32L05,  32Q15
Keywords: symplectic actions, Hamiltonian actions, stability, Harder Narasimhan filtration, Shatz stratification, gauge theory.
@article{AIF_2005__55_3_1017_0,
     author = {Bruasse, Laurent and Teleman, Andrei},
     title = {Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {3},
     year = {2005},
     pages = {1017-1053},
     doi = {10.5802/aif.2120},
     zbl = {1093.32009},
     mrnumber = {2149409},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_3_1017_0}
}
Bruasse, Laurent; Teleman, Andrei. Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry. Annales de l'Institut Fourier, Volume 55 (2005) no. 3, pp. 1017-1053. doi : 10.5802/aif.2120. http://www.numdam.org/item/AIF_2005__55_3_1017_0/

[1] S. B. Bradlow Special metrics and stability for holomorphic bundles with global sections, J. Diff. Geom., Tome 33 (1991), pp. 169-213 | MR 1085139 | Zbl 0697.32014

[2] L. Bruasse Harder-Narasimhan filtration on non Kähler manifolds, Int. Journal of Maths, Tome 12 (2001) no. 5, pp. 579-594 | Article | MR 1843867 | Zbl 01911891

[3] L. Bruasse Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans-torsion, Ann. Inst. Fourier, Tome 53 (2003) no. 2, pp. 539-562 | Numdam | MR 1990006 | Zbl 01940704

[4] L. Bruasse Optimal destabilizing vectors in some gauge theoretical moduli problems (2004) (IML, ref arxiv math.DG/0403264, http://arxiv.org/abs/math.DG/0403264)

[5] L. Bruasse; A. Teleman Harder-Narasimhan filtrations and optimal destabilizing vectors in gauge theory (2003) (article in preparation)

[6] G. Harder; M. Narasimhan On the cohomology groups of moduli spaces, Math. Ann., Tome 212 (1975), pp. 215-248 | Article | MR 364254 | Zbl 0324.14006

[7] P. Heinzner Geometric invariant theory on Stein spaces, Math. Ann., Tome 289 (1991), pp. 631-662 | Article | MR 1103041 | Zbl 0728.32010

[8] P. Heinzner; A. Huckleberry Analytic Hilbert Quotient, MSRI, Cambridge University Press (Several complex variables) Tome 37 (1999), pp. 309-349 | Zbl 0959.32013

[9] P. Heinzner; F. Loose Reduction of complex Hamiltonian G-spaces, Geometric and Functional Analysis, Tome 4 (1994) no. 3, pp. 288-297 | Article | MR 1274117 | Zbl 0816.53018

[10] N. J. Hitchin; A. Karlhede; U. Lindström; M. Rouk Hyperkähler metrics and supersymmetry, Commun. Math. Phys., Tome 108 (1987), pp. 535-589 | Article | MR 877637 | Zbl 0612.53043

[11] F. C. Kirwan Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, Tome 31 (1984) no. Princeton University Press | MR 766741 | Zbl 0553.14020

[12] M. Lübke; A. Teleman The universal Kobayashi-Hitchin correspondance (2003) (article in preparation)

[13] M. Maruyama The theorem of Grauert-Mülich-Spindler, Math. Ann., Tome 255 (1981), pp. 317-333 | Article | MR 615853 | Zbl 0438.14015

[14] D. Mumford; J. Fogarty; F. Kirwan Geometric invariant theory, Springer-Verlag (1982) | MR 1304906 | Zbl 0504.14008

[15] I. Mundet I Riera A Hitchin-Kobayashi correspondence for Kähler fibrations, J. reine angew. Maths, Tome 528 (2000), pp. 41-80 | MR 1801657 | Zbl 1002.53057

[16] Ch. Okonek; A. Schmitt; A. Teleman Master spaces for stable pairs, Topology, Tome 38 (1999) no. 1, pp. 117-139 | Article | MR 1644079 | Zbl 0981.14007

[17] Ch. Okonek; A. Teleman Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces, Comm. Math. Phys., Tome 227 (2002) no. 3, pp. 551-585 | Article | MR 1910831 | Zbl 1037.57025

[18] P. Orlik Seifert Manifold, Springer Verlag, Lectures Notes in Maths, Tome 291 (1972) | MR 426001 | Zbl 0263.57001

[19] S. Ramanan; A. Ramanathan Some remarks on the instability flag, Tôhoku Math. Journ., Tome 36 (1984), pp. 269-291 | Article | MR 742599 | Zbl 0567.14027

[20] S. Shatz The decomposition and specialization of algebraic families of vector bundles, Composito. Math., Tome 35 (1977), pp. 163-187 | Numdam | MR 498573 | Zbl 0371.14010

[21] P. Slodowy Die Theorie der optimalen einparameteruntergruppen für instabile vektoren, Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser (DMV Seminar, 13 DMV Seminar) Tome 13 (1989), pp. 115-131 | Zbl 0753.14006

[22] A. Teleman Analytic stability, symplectic stability in non-algebraic complex geometry (2003) (preprint, math.CV/0309230, http://arxiv.org/abs/math.CV/0309230)