Resolutions of homogeneous bundles on 2
Annales de l'Institut Fourier, Volume 55 (2005) no. 3, p. 973-1015

We characterize minimal free resolutions of homogeneous bundles on 2 . Besides we study stability and simplicity of homogeneous bundles on 2 by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.

Nous caractérisons les résolutions libres minimales des fibrés homogènes sur 2 et nous étudions la stabilité et la simplicité des fibrés homogènes sur 2 par leurs résolutions libres minimales. En particulier, nous établissons un critère de simplicité pour un fibré homogène dans le cas où le premier fibré de sa résolution minimale est irréductible.

DOI : https://doi.org/10.5802/aif.2119
Classification:  14M17,  14F05,  16G20
Keywords: homogeneous bundles, minimal resolutions, quivers
@article{AIF_2005__55_3_973_0,
     author = {Ottaviani, Giorgio and Rubei, Elena},
     title = {Resolutions of homogeneous bundles on ${\mathbb {P}}^2$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {3},
     year = {2005},
     pages = {973-1015},
     doi = {10.5802/aif.2119},
     zbl = {1079.14051},
     mrnumber = {2149408},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_3_973_0}
}
Ottaviani, Giorgio; Rubei, Elena. Resolutions of homogeneous bundles on ${\mathbb {P}}^2$. Annales de l'Institut Fourier, Volume 55 (2005) no. 3, pp. 973-1015. doi : 10.5802/aif.2119. http://www.numdam.org/item/AIF_2005__55_3_973_0/

[Ba] E. Ballico On the stability of certain higher rank bundles on n , Rend. Circ. Mat. Palermo, Tome 41 (1992) no. 2, pp. 309-314 | Article | MR 1196622 | Zbl 0770.14009

[BK] A.I. Bondal; M.M. Kapranov Homogeneous Bundles, Seminar Rudakov, Helices and Vector bundles, Cambridge University Press (Lecture Notes Series of London Math. Soc.) Tome 148 (1990), pp. 45-55 | Zbl 0742.14011

[DL] J.-M. Drézet; J. Le Potier Fibrés stables et fibrés exeptionnels sur le plan projectif, Ann. Sci. École Norm. Sup., 4e série, Tome 18 (1985), pp. 193-244 | Numdam | MR 816365 | Zbl 0586.14007

[Fa] S. Faini On the stability and simplicity of homogeneous bundles (to appear in Boll. U.M.I.)

[FH] W. Fulton; J. Harris Representation Theory, A First Course,, Springer Verlag, Graduate Texts in Math. (1991) | MR 1153249 | Zbl 0744.22001

[GR] P. Gabriel; A.V. Roiter Algebra VIII: Representations of finite dimensional algebras, Springer Verlag, Encyclopaedia of Mathematical Sciences, Tome 73 (1992) | MR 1239446 | Zbl 0839.16001

[Hi1] L. Hille Homogeneous vector bundles and Koszul algebras, Math. Nach., Tome 191 (1998), pp. 189-195 | Article | MR 1621314 | Zbl 0957.14035

[Hi2] L. Hille Small homogeneous vector bundles (1994) (Phd Thesis, Bielefeld) | Zbl 0935.14009

[Ho] G. Horrocks Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., Tome 14 (1964), pp. 689-713 | Article | MR 169877 | Zbl 0126.16801

[Ka] M.M. Kapranov On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math., Tome 92 (1988), pp. 479-508 | Article | MR 939472 | Zbl 0651.18008

[Ki] A. King Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), Tome 45 (1994) no. 180, pp. 515-530 | MR 1315461 | Zbl 0837.16005

[Mi] L. Migliorini Stability of homogeneous bundles, Boll. Unione Mat. Ital. Sez. B, Tome 10 (1996), pp. 963-990 | MR 1430162 | Zbl 0885.14024

[OR] G. Ottaviani; E. Rubei Quivers and the cohomology of homogeneous vector bundles (math.AG/0403307, http://arxiv.org/abs/math.AG/0403307)

[Ra] S. Ramanan Holomorphic vector bundles on homogeneous spaces, Topology, Tome 5 (1966), pp. 159-177 | Article | MR 190947 | Zbl 0138.18602

[Ro] R. Rohmfeld Stability of homogeneous vector bundles on P n , Geom. Dedicata, Tome 38 (1991), pp. 159-166 | MR 1104341 | Zbl 0734.14004

[Si] D. Simpson Linear representation of quivers (Lectures given on the workshop in Waplewo 8–13 September 1997)