Determinant formulae for some tiling problems and application to fully packed loops
Annales de l'Institut Fourier, Volume 55 (2005) no. 6, p. 2025-2050
We present a number of determinant formulae for the number of tilings of various domains in relation with Alternating Sign Matrix and Fully Packed Loop enumeration.
Quelques formules de déterminants sont données pour le dénombrement des pavages dans différents domaines, en relation avec les énumérations de matrices à signes alternés et de boucles compactes.
DOI : https://doi.org/10.5802/aif.2150
Classification:  05A19,  52C20,  82B20
Keywords: Tilings, alternating sign matrices, fully packed loops
@article{AIF_2005__55_6_2025_0,
     author = {Di Francesco, Philippe and Zinn-Justin, Paul and Zuber, Jean-Bernard},
     title = {Determinant formulae for some tiling problems and application to fully packed loops},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     pages = {2025-2050},
     doi = {10.5802/aif.2150},
     zbl = {1075.05007},
     mrnumber = {2187944},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_6_2025_0}
}
Di Francesco, Philippe; Zinn-Justin, Paul; Zuber, Jean-Bernard. Determinant formulae for some tiling problems and application to fully packed loops. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2025-2050. doi : 10.5802/aif.2150. http://www.numdam.org/item/AIF_2005__55_6_2025_0/

[1] M. Adler; P. Van Moerbeke Virasoro action on Schur function expansions, skew Young tableaux and random walks, Comm. Pure Appl. Math., Tome 58 (2005), pp. 362-408 | Article | MR 2116618 | Zbl 02136359

[2] M.T. Batchelor; J. De Gier; B. Nienhuis The quantum symmetric XXZ chain at Δ=-1 2, alternating sign matrices and plane partitions, J. Phys. A, Tome 34 (2001), p. L265-L270 | Article | MR 1836155 | Zbl 1028.82004

[3] D. Bressoud Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press (1999) | MR 1718370 | Zbl 0944.05001

[4] F. Caselli; C. Krattenthaler Proof of two conjectures of Zuber on fully packed loop configurations, J. Combin. Theory Ser. A, Tome 108 (2004), pp. 123-146 | Article | MR 2087309 | Zbl 1054.05005

[5] M. Ciucu; C. Krattenthaler Enumeration of lozenge tilings of hexagons with cut-off corners, J. Combin. Theory Ser. A, Tome 100 (2002), pp. 201-231 | Article | MR 1940333 | Zbl 1015.05006

[6] M. Ciucu; C. Krattenthaler; T. Eisenkölbl; D. Zare Enumeration of lozenge tilings of hexagons with a central triangular hole, J. Combin. Theory Ser. A, Tome 95 (2001), pp. 251-334 | Article | MR 1845144 | Zbl 0997.52010

[7] P. Di Francesco; P. Zinn-Justin; J.-B. Zuber A bijection between classes of fully packed loops and plane partitions, Electron. J. Combin., Tome 11 (2004) no. 1 | MR 2097330 | Zbl 1054.05010

[8] P. Di Francesco; J.-B. Zuber On FPL configurations with four sets of nested arches, JSTAT (2004) | Zbl 02131899

[9] J. De Gier Loops, matchings and alternating-sign matrices ((math.CO/0211285), http://arxiv.org/abs/math.CO/0211285) | Zbl 1070.05008

[10] J. Grassberger; A. King; P. Tirao On the homology of free 2-step nilpotent Lie algebras, J. Algebra, Tome 254 (2002), pp. 213-225 | Article | MR 1933866 | Zbl 1041.17024

[11] C. Krattenthaler Advanced determinant calculus, Séminaire Lotharingien Combin., Tome 42 (1999) | MR 1701596 | Zbl 0923.05007

[12] B. Lindström On the vector representations of induced matroids, Bull. London Math. Soc., Tome 5 (1973), pp. 85-90 | Article | MR 335313 | Zbl 0262.05018

[13] S. Mitra; B. Nienhuis Osculating random walks on cylinders, Discrete Mathematics and Computer Science Proceedings AC, pp. 259-264 in Discrete random walks, DRW'03 (2003) | MR 2042392 | Zbl 1035.82021

[14] S. Mitra; B. Nienhuis; J. De Gier; M.T. Batchelor Exact expressions for correlations in the ground state of the dense O(1) loop model, JSTAT (2004) | Zbl 02131934

[15] On-Line Encyclopedia of Integer Sequences (, http://www.research.att.com/~njas/sequences/Seis.html)

[16] P.A. Pearce; V. Rittenberg; J. De Gier Critical Q=1 Potts model and temperley-Lieb stochastic processes, Teor. Mat. Fiz., Tome 142 (2005), pp. 284-292

[17] A.V. Razumov; Yu.G. Stroganov Combinatorial nature of ground state vector of O(1) loop model, Theor. Math. Phys., Tome 138 (2004), pp. 333-337 | Article | MR 2077318 | Zbl 1178.82020

[18] B. Wieland A large dihedral symmetry of the set of alternating-sign matrices, Electron. J. Combin., Tome 7 (2000) | MR 1773294 | Zbl 0956.05015