On the preservation of combinatorial types for maps on trees
Annales de l'Institut Fourier, Volume 55 (2005) no. 7, p. 2375-2398

We study the preservation of the periodic orbits of an A-monotone tree map f:TT in the class of all tree maps g:SS having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of f into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved.

On étudie la préservation des orbites périodiques des applications A-monotones sur les arbres f:TT, dans la classe de toutes les applications continues sur les arbres g:SS qui ont un cycle avec le même type d’orbite que A. On démontre l’existence d’une application injective de l’ensemble de (presque toutes) les orbites périodiques de f dans l’ensemble des orbites périodiques de chaque application dans la classe, préservant la période. De plus, la position relative des orbites correspondantes dans les arbres T et S (qui ne sont pas forcément homéomorphes) sont essentiellement les mêmes.

DOI : https://doi.org/10.5802/aif.2164
Classification:  37E25
Keywords: Tree maps, minimal dynamics
Keywords: Tree maps, minimal dynamics
@article{AIF_2005__55_7_2375_0,
     author = {Alsed\`a, Llu\'\i s and Juher, David and Mumbr\'u, Pere},
     title = {On the preservation of combinatorial types for maps on trees},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {7},
     year = {2005},
     pages = {2375-2398},
     doi = {10.5802/aif.2164},
     zbl = {1085.37035},
     mrnumber = {2207387},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_7_2375_0}
}
Alsedà, Lluís; Juher, David; Mumbrú, Pere. On the preservation of combinatorial types for maps on trees. Annales de l'Institut Fourier, Volume 55 (2005) no. 7, pp. 2375-2398. doi : 10.5802/aif.2164. http://www.numdam.org/item/AIF_2005__55_7_2375_0/

[1] Adler, R.; Konheim, A.; Mcandrew, M. Topological entropy, Trans. Am. Math. Soc., Tome 114 (1965), pp. 309-319 | Article | MR 175106 | Zbl 0127.13102

[2] Alsedà, Ll.; Guaschi, J.; Los, J.; Mañosas, F.; Mumbrú, P. Canonical representatives for patterns of tree maps, Topology, Tome 36 (1997), pp. 1123-1153 | Article | MR 1445556 | Zbl 0887.58012

[3] Alsedà, Ll.; Gautero, F.; Guaschi, J.; Los, J.; Mañosas, F.; Mumbrú, P. Patterns and minimal dynamics for graph maps (2002) (Prepublicacions UAB) | Zbl 1082.37041

[4] Alsedà, Ll.; Llibre, J.; Misiurewicz, M. Periodic orbits of maps of Y, Trans. Amer. Math. Soc., Tome 313 (1989), pp. 475-538 | Article | MR 958882 | Zbl 0803.54032

[5] Alsedà, Ll.; Llibre, J.; Misiurewicz, M. Combinatorial dynamics and entropy in dimension one, World Scientific, second edition, Advanced Series in Nonlinear Dynamics, Tome 5 (2002) | MR 1807264 | Zbl 0963.37001

[6] Alsedà, Ll.; Llibre, J.; Misiurewicz, M.; Simó, C. Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. & Dynam. Sys., Tome 5 (1985), pp. 501-517 | Article | MR 829854 | Zbl 0592.54037

[7] Baldwin, S. Generalizations of a theorem of Sharkovskii on orbits on continuous real -valued functions, Discrete Math., Tome 67 (1987), pp. 111-127 | Article | MR 913178 | Zbl 0632.06005

[8] Baldwin, S. An extension of Sharkovskii's Theorem to the n -od, Ergod. Th. & Dynam. Sys., Tome 11 (1991), pp. 249-271 | Article | MR 1116640 | Zbl 0741.58010

[9] Misiurewicz, M.; Nitecki, Z. Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc., Tome 94 (1991) no. 456 | MR 1086562 | Zbl 0745.58019

[10] Takahashi, Y. A formula for the topological entropy of one-dimensional dynamics, Sci. Papers College Gen. Ed. Univ. Tokyo, Tome 30 (1980), pp. 11-22 | MR 581221 | Zbl 0465.58023