Geometry of currents, intersection theory and dynamics of horizontal-like maps
[Géométrie des courants, théorie d’intersection et dynamique des applications d’allure horizontale]
Annales de l'Institut Fourier, Tome 56 (2006) no. 2, pp. 423-457.

Nous introduisons une géométrie sur le cône des courants positifs fermés de bidegré (p,p) et nous l’utilisons pour définir l’intersection de tels courants. Nous construisons et étudions aussi les courants de Green et la mesure d’équilibre pour les applications d’allure horizontale, en toute dimension. Les courants de Green vérifient certaines propriétés d’extrémalité. La mesure d’équilibre est invariante, mélangeante et d’entropie maximale. Elle est égale à l’intersection des courants de Green associés à l’application et à son inverse.

We introduce a geometry on the cone of positive closed currents of bidegree (p,p) and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.

DOI : https://doi.org/10.5802/aif.2188
Classification : 37F,  32H50,  32U40
Mots clés : disque structurel de courants, courant de Green, mesure d’équilibre, mélange, entropie
@article{AIF_2006__56_2_423_0,
     author = {Dinh, Tien-Cuong and Sibony, Nessim},
     title = {Geometry of currents, intersection theory and dynamics of horizontal-like maps},
     journal = {Annales de l'Institut Fourier},
     pages = {423--457},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {2},
     year = {2006},
     doi = {10.5802/aif.2188},
     mrnumber = {2226022},
     zbl = {1089.37036},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2188/}
}
TY  - JOUR
AU  - Dinh, Tien-Cuong
AU  - Sibony, Nessim
TI  - Geometry of currents, intersection theory and dynamics of horizontal-like maps
JO  - Annales de l'Institut Fourier
PY  - 2006
DA  - 2006///
SP  - 423
EP  - 457
VL  - 56
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2188/
UR  - https://www.ams.org/mathscinet-getitem?mr=2226022
UR  - https://zbmath.org/?q=an%3A1089.37036
UR  - https://doi.org/10.5802/aif.2188
DO  - 10.5802/aif.2188
LA  - en
ID  - AIF_2006__56_2_423_0
ER  - 
Dinh, Tien-Cuong; Sibony, Nessim. Geometry of currents, intersection theory and dynamics of horizontal-like maps. Annales de l'Institut Fourier, Tome 56 (2006) no. 2, pp. 423-457. doi : 10.5802/aif.2188. http://archive.numdam.org/articles/10.5802/aif.2188/

[1] Bedford, E.; Lyubich, M.; Smillie, J. Polynomial diffeomorphisms of 2 , V: The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993) no. 1, pp. 77-125 | Article | Zbl 0792.58034

[2] Bedford, E.; Smillie, J. Polynomial diffeomorphisms of 2 , III: Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., Volume 294 (1992), pp. 395-420 | Article | Zbl 0765.58013

[3] Demailly, J. P. Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry, Plemum Press (1993), pp. 115-193 | Zbl 0792.32006

[4] Dinh, T. C. Decay of correlations for Hénon maps (to appear)

[5] Dinh, T. C.; Dujardin, R.; Sibony, N. On the dynamics near infinity of some polynomial mappings in 2 , Math. Ann., Volume 333 (2005) no. 4, pp. 703-739 | Article | Zbl 1079.37040

[6] Dinh, T. C.; Sibony, N. Dynamique des applications d’allure polynomiale, J. Math. Pures Appl., Volume 82 (2003), pp. 367-423 | Article | Zbl 1033.37023

[7] Dinh, T. C.; Sibony, N. Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup., Volume 37 (2004), pp. 959-971 | Numdam | Zbl 1074.53058

[8] Dinh, T. C.; Sibony, N. Dynamics of regular birational maps in k , J. Funct. Anal., Volume 222 (2005) no. 1, pp. 202-216 | Article | Zbl 1067.37055

[9] Dinh, T. C.; Sibony, N. Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 291-312 | Article | Zbl 1066.32024

[10] Dinh, T. C.; Sibony, N. Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math., Volume 161 (2005), pp. 1637-1644 | Article | Zbl 05004661

[11] Dujardin, R. Hénon-like mappings in 2 , Amer. J. Math., Volume 126 (2004), pp. 439-472 | Article | Zbl 1064.37035

[12] Duval, J.; Sibony, N. Polynomial convexity, rational convexity, and currents, Duke Math. J., Volume 79 (1995) no. 2, pp. 487-513 | Article | Zbl 0838.32006

[13] Federer, H. Geometric Measure Theory, Springer Verlag, New York, 1969 | Zbl 0176.00801

[14] Fornæss, J. E.; Sibony, N. Complex Hénon mappings in 2 and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 | Article | Zbl 0761.32015

[15] Fornæss, J. E.; Sibony, N. Oka’s inequality for currents and applications, Math. Ann., Volume 301 (1995), pp. 399-419 | Article | Zbl 0832.32010

[16] Gromov, M. On the entropy of holomorphic maps, Enseignement Math., Volume 49 (2003), pp. 217-235 Manuscript (1977) | Zbl 1080.37051

[17] Harvey, R.; Polking, J. Extending analytic objects, Comm. Pure Appl. Math., Volume 28 (1975), pp. 701-727 | Article | Zbl 0323.32013

[18] Harvey, R.; Shiffman, B. A characterization of holomorphic chains, Ann. of Math. (2), Volume 99 (1974), pp. 553-587 | Article | Zbl 0287.32008

[19] Hörmander, L. The analysis of Linear partial differential operators I, Springer-Verlag, 1983 | Zbl 0521.35001

[20] Katok, A.; Hasselblatt, B. Introduction to the modern theory of dynamical systems, Encycl. of Math. and its Appl., 54, Cambridge Univ. Press., 1995 | Zbl 0878.58020

[21] Lelong, P. Fonctions plurisousharmoniques et formes différentielles positives, Dunod, Paris, 1968 | Zbl 0195.11603

[22] Sibony, N. Dynamique des applications rationnelles de k , Panoramas et Synthèses, Volume 8 (1999), pp. 97-185 | Zbl 1020.37026

[23] Smillie, J. The entropy of polynomial diffeomorphisms of 2 , Ergodic Theory & Dynamical Systems, Volume 10 (1990), pp. 823-827 | Zbl 0695.58023

[24] Walters, P. An introduction to ergodic theory, Springer, Berlin-Heidelberg-New York, 1982 | Zbl 0475.28009

[25] Yomdin, Y. Volume growth and entropy, Israel J. Math., Volume 57 (1987), pp. 285-300 | Article | Zbl 0641.54036

Cité par Sources :