A note on functional equations for zeta functions with values in Chow motives  [ Sur l’équation fonctionnelle des fonctions zêta à valeurs dans les motifs de Chow ]
Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1927-1945.

Nous considérons les fonctions zêta à valeurs dans l’anneau de Grothendieck des motifs de Chow. L’étude de la λ-structure de cet anneau, nous permet d’obtenir une équation fonctionnelle pour la fonction zêta des variétés abéliennes. En outre nous montrons que l’existence d’une telle équation fonctionnelle est une propriété stable par produit.

We consider zeta functions with values in the Grothendieck ring of Chow motives. Investigating the λ–structure of this ring, we deduce a functional equation for the zeta function of abelian varieties. Furthermore, we show that the property of having a rational zeta function satisfying a functional equation is preserved under products.

DOI : https://doi.org/10.5802/aif.2318
Classification : 14G10,  14F42
Mots clés : fonctions zêta, motifs de Chow, équation fonctionnelle
@article{AIF_2007__57_6_1927_0,
     author = {Heinloth, Franziska},
     title = {A note on functional equations for zeta functions with values in Chow motives},
     journal = {Annales de l'Institut Fourier},
     pages = {1927--1945},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {6},
     year = {2007},
     doi = {10.5802/aif.2318},
     mrnumber = {2377891},
     zbl = {1154.14018},
     language = {en},
     url = {archive.numdam.org/item/AIF_2007__57_6_1927_0/}
}
Heinloth, Franziska. A note on functional equations for zeta functions with values in Chow motives. Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1927-1945. doi : 10.5802/aif.2318. http://archive.numdam.org/item/AIF_2007__57_6_1927_0/

[1] André, Y. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], Volume 17, Société Mathématique de France, Paris, 2004 | MR 2115000 | Zbl 1060.14001

[2] André, Y. Motifs de dimension finie d’après S.-I. Kimura, P. O’Sullivan,, Astérisque, Volume 299 (2005), pp. 115-145 (Séminaire Bourbaki, Vol. 2003/2004) | Numdam | MR 2167204 | Zbl 1080.14010

[3] Atiyah, M. F.; Tall, D. O. Group representations, λ-rings and the J-homomorphism, Topology, Volume 8 (1969), pp. 253-297 | Article | MR 244387 | Zbl 0159.53301

[4] del Baño, S. On motives and moduli spaces of stable bundles over a curve, PhD thesis, Universitat Politècnica de Catalunya, Barcelona, 1998 (Available from http://www-mal.upc.es/recerca/1998.html)

[5] del Baño, S.; Aznar, V. Navarro On the motive of a quotient variety, Collect. Math., Volume 49 (1998) no. 2-3, pp. 203-226 (Dedicated to the memory of Fernando Serrano) | EuDML 41228 | MR 1677089 | Zbl 0929.14033

[6] Beauville, A. Sur l’anneau de Chow d’une variété abélienne, Math. Ann., Volume 273 (1986) no. 4, pp. 647-651 | Article | EuDML 164077 | MR 826463 | Zbl 0566.14003

[7] Deligne, P. Catégories tensorielles, Mosc. Math. J., Volume 2 (2002) no. 2, pp. 227-248 (Dedicated to Yuri I. Manin on the occasion of his 65th birthday) | MR 1944506 | Zbl 1005.18009

[8] Deninger, C.; Murre, J. Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math., Volume 422 (1991), pp. 201-219 | EuDML 153379 | MR 1133323 | Zbl 0745.14003

[9] Fulton, W.; Harris, J. Representation theory, Graduate Texts in Mathematics, Volume 129, Springer-Verlag, New York, 1991 | MR 1153249 | Zbl 0744.22001

[10] Gillet, H.; Soulé, C. Descent, motives and K-theory, J. Reine Angew. Math., Volume 478 (1996), pp. 127-176 | Article | MR 1409056 | Zbl 0863.19002

[11] Göttsche, L. On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett., Volume 8 (2001) no. 5-6, pp. 613-627 | MR 1879805 | Zbl 1079.14500

[12] Guillén, F.; Aznar, V. Navarro Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 1-91 | Article | Numdam | Zbl 1075.14012

[13] Kapranov, M. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, MSRI Preprint 2000-006 (arXiv:math.AG/0001005)

[14] Kimura, S–I. Chow groups are finite dimensional, in some sense, Math. Ann., Volume 331 (2005) no. 1, pp. 173-201 | Article | MR 2107443 | Zbl 1067.14006

[15] Künnemann, K. A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math., Volume 113 (1993) no. 1, pp. 85-102 | Article | MR 1223225 | Zbl 0806.14001

[16] Künnemann, K. On the Chow motive of an abelian scheme, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.) Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 189-205 | MR 1265530 | Zbl 0823.14032

[17] Larsen, M.; Lunts, V. A. Motivic measures and stable birational geometry, Mosc. Math. J., Volume 3 (2002) no. 1, p. 85-95, 259 | MR 1996804 | Zbl 1056.14015

[18] Larsen, M.; Lunts, V. A. Rationality criteria for motivic zeta functions, Compos. Math., Volume 140 (2004) no. 6, pp. 1537-1560 | MR 2098401 | Zbl 1076.14024

[19] Manin, Yu. I. Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.), Volume 77 (119) (1968), pp. 475-507 | MR 258836 | Zbl 0199.24803

[20] Scholl, A. J. Classical motives, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.) Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163-187 | MR 1265529 | Zbl 0814.14001