Soit
Let
Keywords: Iwasawa theory, modular forms,
Mot clés : théorie d’Iwasawa, formes modulaires, fonctions
@article{AIF_2008__58_3_1023_0, author = {Delbourgo, Daniel and Ward, Tom}, title = {Non-abelian congruences between $L$-values of elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {1023--1055}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2377}, zbl = {1165.11077}, mrnumber = {2427518}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2377/} }
TY - JOUR AU - Delbourgo, Daniel AU - Ward, Tom TI - Non-abelian congruences between $L$-values of elliptic curves JO - Annales de l'Institut Fourier PY - 2008 SP - 1023 EP - 1055 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2377/ DO - 10.5802/aif.2377 LA - en ID - AIF_2008__58_3_1023_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Ward, Tom %T Non-abelian congruences between $L$-values of elliptic curves %J Annales de l'Institut Fourier %D 2008 %P 1023-1055 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2377/ %R 10.5802/aif.2377 %G en %F AIF_2008__58_3_1023_0
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 1023-1055. doi : 10.5802/aif.2377. http://archive.numdam.org/articles/10.5802/aif.2377/
[1]
[2] Algebraicity of
[3] The
[4] Discriminant of Hecke fields and twisted adjoint
[5] Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | DOI | MR
[6] Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Volume 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | DOI | MR | Zbl
[7]
[8]
[9]
[10] Non-Archimedean
[11] Sur les représentations modulaires de degré
[12] Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Volume 48 (1981) no. 3, pp. 697 | DOI | Zbl
[13] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Volume 98 (1989) no. 1, pp. 75-106 | DOI | EuDML | MR | Zbl
[14] Number theoretic background, Automorphic forms, representations and
- Variation of the analytic
-invariant over a solvable extension, Proceedings of the London Mathematical Society. Third Series, Volume 120 (2020) no. 6, pp. 918-960 | DOI:10.1112/plms.12306 | Zbl:1465.11209 - Heegner cycles and congruences between anticyclotomic
-adic -functions over CM-extensions, The New York Journal of Mathematics, Volume 26 (2020), pp. 496-525 | Zbl:1469.11087 -
-congruences for three-dimensional Lie groups, Annales Mathématiques du Québec, Volume 43 (2019) no. 1, pp. 161-211 | DOI:10.1007/s40316-018-0100-y | Zbl:1470.11278 - Congruences modulo
between -twisted Hasse-Weil -values, Transactions of the American Mathematical Society, Volume 370 (2018) no. 11, pp. 8047-8080 | DOI:10.1090/tran/7240 | Zbl:1457.11149 - Exceptional zeroes of
-adic -functions over non-abelian field extensions, Glasgow Mathematical Journal, Volume 58 (2016) no. 2, pp. 385-432 | DOI:10.1017/s0017089515000245 | Zbl:1410.11088 - Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 160 (2016) no. 1, pp. 11-38 | DOI:10.1017/s0305004115000535 | Zbl:1371.11142
- Higher order congruences amongst Hasse-Weil-
-values, Journal of the Australian Mathematical Society, Volume 98 (2015) no. 1, pp. 1-38 | DOI:10.1017/s1446788714000445 | Zbl:1348.11084 - Non-abelian
-adic -functions and Eisenstein series of unitary groups – the CM method, Annales de l'Institut Fourier, Volume 64 (2014) no. 2, pp. 793-891 | DOI:10.5802/aif.2866 | Zbl:1396.11124 -
-adic -functions over the false Tate curve extensions, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 155 (2013) no. 3, pp. 483-498 | DOI:10.1017/s0305004113000431 | Zbl:1286.11177 - Non-commutative Iwasawa theory for modular forms, Proceedings of the London Mathematical Society. Third Series, Volume 107 (2013) no. 3, pp. 481-516 | DOI:10.1112/plms/pds061 | Zbl:1291.11089
- Congruences for convolutions of Hilbert modular forms, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 153 (2012) no. 3, pp. 471-487 | DOI:10.1017/s0305004112000229 | Zbl:1303.11058
- Non-Abelian congruences between special values of
-functions of elliptic curves: the CM case, International Journal of Number Theory, Volume 7 (2011) no. 7, pp. 1883-1934 | DOI:10.1142/s179304211100468x | Zbl:1279.11107
Cité par 12 documents. Sources : zbMATH