Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2
Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1785-1837.

On détermine la dimension d’une représentation du groupe linéaire définie par un sous-espace vectoriel de l’algèbre à puissances divisées, puis on explicite l’image du transfert algébrique en degré générique et celle du transfert algébrique quadruple, et finalement on identifie les indécomposables de degré pair de l’algèbre polynomiale à quatre variables, vue comme module sur l’algèbre de Steenrod.

We compute the dimension of an algebra with divided powers viewed as a representation of the general linear group, then compute the image of the algebraic transfer in generic degrees, and determine the indecomposable elements of even degree in the polynomial algebra in four variables viewed as a module over the Steenrod algebra.

DOI : https://doi.org/10.5802/aif.2399
Classification : 55S10
Mots clés : algèbre de Steenrod, groupe linéaire, puissances divisées
@article{AIF_2008__58_5_1785_0,
     author = {Nam, Tran Ngoc},
     title = {Transfert alg\'ebrique et action du groupe lin\'eaire sur les puissances divis\'ees modulo~2},
     journal = {Annales de l'Institut Fourier},
     pages = {1785--1837},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {5},
     year = {2008},
     doi = {10.5802/aif.2399},
     mrnumber = {2445834},
     zbl = {1152.55010},
     language = {fr},
     url = {archive.numdam.org/item/AIF_2008__58_5_1785_0/}
}
Nam, Tran Ngoc. Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2. Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1785-1837. doi : 10.5802/aif.2399. http://archive.numdam.org/item/AIF_2008__58_5_1785_0/

[1] Adams, J. F. On the structure and applications of the Steenrod algebra, Comment. Math. Helv., Volume 32 (1958), pp. 180-214 | Article | MR 96219 | Zbl 0083.17802

[2] Adams, J. F. On the non-existence of elements of Hopf invariant one, Ann. of Math., Volume 72 (1960), pp. 20-104 | Article | MR 141119 | Zbl 0096.17404

[3] Alghamdi, M. A.; Crabb, M. C.; Hubbuck, J. R. Representations of the homology of BV and the Steenrod algebra I, London Math. Soc. Lecture Note Ser., Volume 176 (1992), pp. 217-234 | MR 1232208 | Zbl 0752.55012

[4] Barratt, M. G.; Priddy, S. On the homology of non-connected monoids and their associated groups, Comment. Math. Helv., Volume 47 (1972), pp. 1-14 | Article | MR 314940 | Zbl 0262.55015

[5] Boardman, J. M. Modular representations on the homology of powers of real projective spaces, Contemp. Math., Volume 146 (1993), pp. 49-70 | MR 1224907 | Zbl 0789.55015

[6] Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system I : The user language, J. Symbolic Comput., Volume 24 (1997), pp. 235-265 | Article | MR 1484478 | Zbl 0898.68039

[7] Bousfield, A. K.; Curtis, E. B.; Kan, D. M.; Quillen, D. G.; Rector, D. L.; Schlesinger, J. W. The mod p lower central series and the Adams spectral sequence, Topology, Volume 5 (1966), pp. 331-342 | Article | MR 199862 | Zbl 0158.20502

[8] Bruner, R.; Hà, L. M.; Hung, N. H. V. On behavior of the algebraic transfer, à paraître dans Trans. Amer. Math. Soc. | MR 2095619 | Zbl 1055.55015

[9] Crabb, M. C.; Hubbuck, J. R. Representations of the homology of BV and the Steenrod algebra II, Progr. Math., Volume 136 (1996), pp. 143-154 | MR 1397726 | Zbl 0858.55014

[10] Crossley, M. D. 𝒜(p)-annihilated elements in H * (P ×P ), Math. Proc. Cambridge Philos. Soc., Volume 120 (1996), pp. 441-453 | Article | MR 1388199 | Zbl 0868.55014

[11] Crossley, M. D. 𝒜(p) generators for H * V and Singer’s homological transfer, Math. Z., Volume 230 (1999), pp. 401-411 | Article | Zbl 0929.55014

[12] Crossley, M. D. Monomial bases for H * (P ×P ) over 𝒜(p), Trans. Amer. Math. Soc., Volume 351 (1999), pp. 171-192 | Article | MR 1451596 | Zbl 0910.55006

[13] Curtis, E. B. The Dyer–Lashof algebra and the Λ-algebra, Illinois J. Math., Volume 19 (1975), pp. 231-246 | MR 377885 | Zbl 0311.55007

[14] Dyer, E.; Lashof, R. K. Homology of iterated loopspaces, Amer. J. Math., Volume 84 (1962), pp. 35-88 | Article | MR 141112 | Zbl 0119.18206

[15] Eilenberg, S.; MacLane, S. On the groups H(π,n), I, Ann. of Math., Volume 58 (1953), pp. 55-106 | Article | MR 56295 | Zbl 0050.39304

[16] Goerss, P. Unstable projectives and stable Ext : with applications, Proc. London Math. Soc., Volume 53 (1986), pp. 539-561 | Article | MR 868458 | Zbl 0638.55018

[17] Hà, L. M. Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, in preparation | Zbl pre05261733

[18] Hung, N. H. V. The cohomology of the Steenrod algebra and representations of the general linear groups, à paraître dans Trans. Amer. Math. Soc. | MR 2159700 | Zbl 1074.55006

[19] Hung, N. H. V. Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 3893-3910 (Erratum 355 (2003), p. 3841–3842) | Article | MR 1433119 | Zbl 0902.55004

[20] Hung, N. H. V.; Nam, T. N. The hit problem for the Dickson algebra, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 5029-5040 | Article | MR 1852092 | Zbl 0979.55011

[21] Kameko, M. Generators of the cohomology of BV 4 , in preparation

[22] Kameko, M. Products of projective spaces as Steenrod modules (1990) (Ph. D. Thesis)

[23] Lannes, J.; Zarati, S. Foncteurs dérivés de la déstabilisation, C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983), pp. 573-576 | MR 705164 | Zbl 0534.55008

[24] Lannes, J.; Zarati, S. Invariants de Hopf d’ordre supérieur et suite spectrale d’Adams, C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983), pp. 695-698 | Zbl 0534.55009

[25] Lannes, J.; Zarati, S. Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987), pp. 25-59 | Article | MR 871217 | Zbl 0627.55014

[26] Lin, W. H. Some differentials in the Adams spectral sequence for spheres, preprint

[27] Liulivicius, A. The factorization of cyclic reduced powers by secondary operations Volume 42, Mem. Amer. Math. Soc., 1962 | Zbl 0131.38101

[28] Mac Lane, S. Homology, Classics in Mathematics, Springer–Verlag, Berlin, 1995 | MR 1344215 | Zbl 0818.18001

[29] Madsen, I. On the action of the Dyer–Lashof algebra in H * (G), Pacific J. Math., Volume 60 (1975), pp. 235-275 | MR 388392 | Zbl 0313.55018

[30] Mahowald, M.; Tangora, M. An infinite subalgebra of Ext 𝒜 ( 2 , 2 ), Trans. Amer. Math. Soc., Volume 132 (1968), pp. 263-274 | Article | MR 222887 | Zbl 0177.51401

[31] Mann, B. M.; Miller, E. Y.; Miller, H. R. S 1 -equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc., Volume 295 (1986), pp. 233-256 | MR 831198 | Zbl 0597.55010

[32] Margolis, H.; Priddy, S.; Tangora, M. Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology, Volume 10 (1970), pp. 43-46 | Article | MR 300272 | Zbl 0223.55030

[33] Margolis, H. R. Spectra and the Steenrod algebra Volume 29, North–Holland Mathematical Library, 1983 | MR 738973 | Zbl 0552.55002

[34] May, J. P. The cohomology of restricted Lie algebras and Hopf algebras, applications to the Steenrod algebra, Ph.D. Thesis, Princeton University, 1964 | MR 185595

[35] Milnor, J. The Steenrod algebra and its dual, Ann. of Math., Volume 67 (1958), pp. 150-171 | Article | MR 99653 | Zbl 0080.38003

[36] Minami, N. The Adams spectral sequence and the triple transfer, Amer. J. Math., Volume 117 (1995), pp. 965-985 | Article | MR 1342837 | Zbl 0851.55022

[37] Minami, N. On the Kervaire invariant problem, Contemp. Math., Amer. Math. Soc., Providence, RI, Volume 220 (1998), pp. 229-253 | MR 1642897 | Zbl 0915.55006

[38] Minami, N. The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351 | Article | MR 1443884 | Zbl 0932.55012

[39] Mitchell, S. Splitting B(/p) n and BT n via modular representation theory, Math. Z., Volume 189 (1985), pp. 1-9 | Article | MR 776532 | Zbl 0547.55017

[40] Mùi, H. Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 319-369 | MR 422451 | Zbl 0335.18010

[41] Nam, T. N. 𝒜-générateurs génériques pour l’algèbre polynomiale, à paraître dans Advances in Mathematics | Zbl 1060.55006

[42] Nam, T. N. Système générateur minimal de 𝔽 2 [x,y,z] comme module sur l’algèbre de Steenrod, (en langue vietnamienne), Mémoire de fin d’études universitaires, Université des Sciences à Hanoï, 1999

[43] Novikov, S. P. On the cohomology of the Steenrod algebra (Russian), Dokl. Akad. Nauk SSSR, Volume 128 (1959), pp. 893-895 | MR 111022 | Zbl 0127.38804

[44] Palmieri, J. H. Quillen stratification for the Steenrod algebra, Ann. of Math., Volume 149 (1999), pp. 421-449 | Article | MR 1689334 | Zbl 0932.55021

[45] Peterson, F. P. Generators of H * (P P ) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., 833–55–89, 1987

[46] Peterson, F. P. 𝒜-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), p. 311-312 | Article | MR 974987 | Zbl 0692.55012

[47] Quillen, D. On the completion of a simplicial monoid, preprint

[48] Schwartz, L. Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Math., 1994 | Zbl 0871.55001

[49] Singer, W. M. On finite linear groups and the homology of the Steenrod algebra, preprint, 1980

[50] Singer, W. M. Invariant theory and the lambda algebra, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 673-693 | Article | MR 716844 | Zbl 0533.55013

[51] Singer, W. M. The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 | Article | MR 1022818 | Zbl 0687.55014

[52] Steenrod, N. E.; Epstein, D. B. A. Cohomology operations, Ann. of Math. Stud., Volume 50, Princeton University Press, 1962 | MR 145525 | Zbl 0102.38104

[53] Tangora, M. C. On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64 | Article | MR 266205 | Zbl 0198.28202

[54] Trí, T. T. The irreducible modular representations of parabolic subgroups of general linear groups, Comm. Algebra, Volume 26 (1998), pp. 41-47 | Article | MR 1600709 | Zbl 0894.20011

[55] Wang, J. S. P. On the cohomology of the mod 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math., Volume 11 (1967), pp. 480-490 | MR 214065 | Zbl 0161.20204

[56] Wilkerson, C. Classifying spaces, Steenrod operations and algebraic closure, Topology, Volume 16 (1977), pp. 227-237 | Article | MR 442932 | Zbl 0404.55019

[57] Wood, R. M. W. Steenrod squares of polynomials, London Math. Soc. Lecture Note Ser., Volume 139 (1989), pp. 173-177 | MR 1055877 | Zbl 0696.55028

[58] Wood, R. M. W. Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 307-309 | Article | MR 974986 | Zbl 0692.55011

[59] Wood, R. M. W. Problems in the Steenrod algebra, Bull. London Math. Soc., Volume 146 (1998), pp. 449-517 | Article | MR 1643834 | Zbl 0924.55015

[60] Yoneda, N. Notes on products in Ext, Proc. Amer. Math. Soc., Volume 9 (1958), pp. 873-875 | MR 175957 | Zbl 0101.27204

[61] Zachariou, A. A subalgebra of Ext 𝒜 ** ( 2 , 2 ), Bull. London Math. Soc., Volume 73 (1967), p. 647-648 | MR 214060 | Zbl 0246.18014

[62] Zachariou, A. A polynomial subalgebra of the cohomology of the Steenrod algebra, Publ. Res. Inst. Math. Sci., Volume 9 ((1973/74), pp. 157-164 | Article | MR 341489 | Zbl 0279.55016