A Hilbert Lemniscate Theorem in 2
[Un théorème de la lemniscate de Hilbert dans 2 ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2191-2220.

Pour un compact K dans C 2 , regulier, pôlynomiallement convexe et cerclé, on construit une suite de paires {P n ,Q n } avec P n ,Q n pôlynomes homogènes en deux variables et deg P n = deg Q n =n tel que les ensembles K n :={(z,w)C 2 :|P n (z,w)|1,|Q n (z,w)|1} font une approximation de K et quand K est la fermeture d’un domaine strictement pseudoconvexe les mesures de comptage normalisées associées à l’ensemble fini {P n =Q n =1} tendent vers la mesure de Monge-Ampère pour K. L’élément principal est un théorème d’approximation pour les fonctions sousharmoniques de croissance logarithmique à une variable.

For a regular, compact, polynomially convex circled set K in C 2 , we construct a sequence of pairs {P n ,Q n } of homogeneous polynomials in two variables with deg P n = deg Q n =n such that the sets K n :={(z,w)C 2 :|P n (z,w)|1,|Q n (z,w)|1} approximate K and if K is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set {P n =Q n =1} converge to the pluripotential-theoretic Monge-Ampère measure for K. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.

DOI : 10.5802/aif.2411
Classification : 32U05, 32W20
Keywords: Logarithmic potential, Monge-Ampère measure, subharmonic functions, atomization
Mot clés : potentiel logarithmique, mesure de Monge-Ampère, fonctions sousharmoniques, atomisation
Bloom, Thomas 1 ; Levenberg, Norman 2 ; Lyubarskii, Yu. 3

1 University of Toronto Toronto (Canada)
2 Indiana University Bloomington, IN 47405 (USA)
3 Norwegian University of Science and Technology Trondheim, 7491 (Norway)
@article{AIF_2008__58_6_2191_0,
     author = {Bloom, Thomas and Levenberg, Norman and Lyubarskii, Yu.},
     title = {A {Hilbert} {Lemniscate} {Theorem} in $\mathbb{C}^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {2191--2220},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2411},
     zbl = {1152.32015},
     mrnumber = {2473634},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2411/}
}
TY  - JOUR
AU  - Bloom, Thomas
AU  - Levenberg, Norman
AU  - Lyubarskii, Yu.
TI  - A Hilbert Lemniscate Theorem in $\mathbb{C}^2$
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 2191
EP  - 2220
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2411/
DO  - 10.5802/aif.2411
LA  - en
ID  - AIF_2008__58_6_2191_0
ER  - 
%0 Journal Article
%A Bloom, Thomas
%A Levenberg, Norman
%A Lyubarskii, Yu.
%T A Hilbert Lemniscate Theorem in $\mathbb{C}^2$
%J Annales de l'Institut Fourier
%D 2008
%P 2191-2220
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2411/
%R 10.5802/aif.2411
%G en
%F AIF_2008__58_6_2191_0
Bloom, Thomas; Levenberg, Norman; Lyubarskii, Yu. A Hilbert Lemniscate Theorem in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2191-2220. doi : 10.5802/aif.2411. http://archive.numdam.org/articles/10.5802/aif.2411/

[1] Ahag, P. A Dirichlet problem for the complex Monge-Ampère operator in (f), Michigan Math. J., Volume 55 (2007) no. 1, pp. 123-138 | DOI | MR

[2] Bedford, E.; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math., Volume 37 (1976), pp. 1-44 | DOI | MR | Zbl

[3] Bedford, E.; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl

[4] Bishop, E. Mappings of partially analytic spaces, Amer. J. Math., Volume 83 (1961), pp. 209-242 | DOI | MR | Zbl

[5] Blocki, Z. On the definition of the Monge-Ampère operator in 2 , Math. Ann., Volume 328 (2004) no. 3, pp. 415-423 | DOI | MR | Zbl

[6] Bloom, T. Some applications of the Robin function to multivariable approximation theory, J. Approx. Th., Volume 92 (1998), pp. 1-21 | DOI | MR | Zbl

[7] Bloom, T. Random polynomials and Green functions, International Math. Res. Notices, Volume 28 (2005), pp. 1689-1708 | DOI | MR | Zbl

[8] Cegrell, U. Weak-* convergence of Monge-Ampère measures, Math. Z., Volume 254 (2006) no. 3, pp. 505-508 | DOI | MR | Zbl

[9] Demailly, J.-P. Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), pp. 115-193 (Univ. Ser. Math., Plenum, New York) | MR | Zbl

[10] Drasin, D. Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 37, Kluwer Acad. Publ., Dordrecht, 2001, pp. 163-189 (Montreal, QC, 2000) | MR | Zbl

[11] Hörmander, L. An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966 | MR | Zbl

[12] Hörmander, L. Notions of Convexity, Birkhäuser, 1994 | MR | Zbl

[13] Klimek, M. Pluripotential Theory, Clarendon Press, Oxford, 1991 | MR | Zbl

[14] Lyubarskii, Yu.; Malinnikova, E. On approximation of subharmonic functions, Journal d’Analyse Math., Volume 83 (2001), pp. 121-149 | DOI | Zbl

[15] Ronkin, L. I. Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence, 1974 | MR | Zbl

[16] Sadullaev, A. Rational approximation and pluripolar sets, Math USSR Sbornik, Volume 47 (1984), pp. 91-113 | DOI | Zbl

[17] Stahl, H. The convergence of Padé approximants to functions with branch points, J. Approx. Th., Volume 91 (1997), pp. 139-204 | DOI | MR | Zbl

[18] Taylor, B. A. An estimate for an extremal plurisubharmonic function on n , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328, 1983 | MR | Zbl

[19] Yulmukhametov, R. Approximation of subharmonic functions, Anal. Math., Volume 11 (1985) no. 3, pp. 257-282 (Russian) | MR | Zbl

Cité par Sources :