Homogeneous bundles and the first eigenvalue of symmetric spaces  [ Fibrés homogènes et première valeur propre sur les espaces symétriques ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 7, pp. 2315-2331.

On montre que le point de Gieseker d’un fibré homogène irréductible sur un espace homogène rationnel est stable. On en déduit une majoration optimale de la première valeur propre du laplacien d’une métrique Kählérienne quelconque sur un espace symétrique Hermitien compact du type ABDC.

In this note we prove the stability of the Gieseker point of an irreducible homogeneous bundle over a rational homogeneous space. As an application we get a sharp upper estimate for the first eigenvalue of the Laplacian of an arbitrary Kähler metric on a compact Hermitian symmetric spaces of ABCD–type.

DOI : https://doi.org/10.5802/aif.2415
Classification : 53C55,  32M10
Mots clés : fibrés homogènes, spectre du Laplacien
@article{AIF_2008__58_7_2315_0,
     author = {Biliotti, Leonardo and Ghigi, Alessandro},
     title = {Homogeneous bundles and the first eigenvalue of symmetric spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {2315--2331},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {7},
     year = {2008},
     doi = {10.5802/aif.2415},
     mrnumber = {2498352},
     zbl = {1161.53064},
     language = {en},
     url = {http://archive.numdam.org/item/AIF_2008__58_7_2315_0/}
}
Biliotti, Leonardo; Ghigi, Alessandro. Homogeneous bundles and the first eigenvalue of symmetric spaces. Annales de l'Institut Fourier, Tome 58 (2008) no. 7, pp. 2315-2331. doi : 10.5802/aif.2415. http://archive.numdam.org/item/AIF_2008__58_7_2315_0/

[1] Akhiezer, D. N. Lie group actions in complex analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, Braunschweig, 1995 | MR 1334091 | Zbl 0845.22001

[2] Arezzo, C.; Ghigi, A.; Loi, A. Stable bundles and the first eigenvalue of the Laplacian, J. Geom. Anal., Volume 17 (2007) no. 3, pp. 375-386 | MR 2358762 | Zbl 1128.58013

[3] Baston, R. J.; Eastwood, M. G. The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1989 | MR 1038279 | Zbl 0726.58004

[4] Bourguignon, J.-P.; Li, P.; Yau, S.-T. Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv., Volume 69 (1994) no. 2, pp. 199-207 | Article | MR 1282367 | Zbl 0814.53040

[5] Colbois, B.; Dodziuk, J. Riemannian metrics with large λ 1 , Proc. Amer. Math. Soc., Volume 122 (1994) no. 3, p. 905-906 | MR 1213857 | Zbl 0820.58056

[6] Donaldson, S. K.; Kronheimer, P. B. The geometry of four-manifolds, Oxford Mathematical Monographs. Oxford: Clarendon Press. ix, 440p., New York, 1990 | MR 1079726 | Zbl 0820.57002

[7] El Soufi, A.; Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math., Volume 195 (2000) no. 1, pp. 91-99 | Article | MR 1781616 | Zbl 1030.53043

[8] Fels, G.; Huckleberry, A.; Wolf, J. A. Cycle spaces of flag domains, Progress in Mathematics, 245, Birkhäuser Boston Inc., Boston, MA, 2006 (A complex geometric viewpoint) | MR 2188135 | Zbl 1084.22011

[9] Futaki, A. Kähler-Einstein metrics and integral invariants, Springer-Verlag, Berlin, 1988 | MR 947341 | Zbl 0646.53045

[10] Gieseker, D. On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 45-60 | Article | MR 466475 | Zbl 0381.14003

[11] Heinzner, P.; Huckleberry, A. Analytic Hilbert quotients, Several complex variables (Berkeley, CA, 1995-1996), Volume 37, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 1999, pp. 309-349 | MR 1748608 | Zbl 0959.32013

[12] Heinzner, P.; Schwarz, G. W. Cartan decomposition of the moment map, Math. Ann., Volume 337 (2007) no. 1, pp. 197-232 | Article | MR 2262782 | Zbl 1110.32008

[13] Helgason, S. Differential geometry, Lie groups, and symmetric spaces, 80, Pure and Applied Mathematic, Academic Press Inc., XV. 628 p., New York, 1978 | MR 514561 | Zbl 0451.53038

[14] Humphreys, J. E. Introduction to Lie algebras and representation theory, 9, Graduate Texts in Mathematics, Springer-Verlag, New York, 1978 (Second printing, revised) | MR 499562 | Zbl 0447.17001

[15] Kempf, G.; Ness, L. The length of vectors in representation spaces, Algebraic geometry. (Proc. Summer Meeting, Copenhagen, 1978), Volume 732, Lecture Notes in Math., Springer, Berlin, 1979, pp. 233-243 | MR 555701 | Zbl 0407.22012

[16] Kobayashi, S. Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, Volume 15, Princeton University Press, Princeton, NJ, 1987 (Kanô Memorial Lectures, 5) | MR 909698 | Zbl 0708.53002

[17] Kobayashi, S.; Nagano, T. On filtered Lie algebras and geometric structures. II, J. Math. Mech., Volume 14 (1965), pp. 513-521 | MR 185042 | Zbl 0163.28103

[18] Luna, D. Sur les orbites fermées des groupes algébriques réductifs, Invent. Math., Volume 16 (1972), pp. 1-5 | Article | MR 294351 | Zbl 0249.14016

[19] Mumford, D.; Fogarty, J.; Kirwan, F. Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994 (third edition) | MR 1304906 | Zbl 0797.14004

[20] Onishchik, A. L.; Vinberg, È. B. Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 (Translated from the Russian and with a preface by D. A. Leites) | MR 1064110 | Zbl 0722.22004

[21] Ottaviani, G. Spinor bundles on quadrics, Trans. Amer. Math. Soc., Volume 307 (1988) no. 1, pp. 301-316 | Article | MR 936818 | Zbl 0657.14006

[22] Ottaviani, G. Rational homogeneous varieties, Notes from a course held in Cortona, Italy, 1995 (http://www.math.unifi.it/ottavian/public.html)

[23] Ramanan, S. Holomorphic vector bundles on homogeneous spaces, Topology, Volume 5 (1966), pp. 159-177 | Article | MR 190947 | Zbl 0138.18602

[24] Umemura, H. On a theorem of Ramanan, Nagoya Math. J., Volume 69 (1978), pp. 131-138 | MR 473243 | Zbl 0345.14017

[25] Wang, X. Balance point and stability of vector bundles over a projective manifold, Math. Res. Lett., Volume 9(2-3) (2002), pp. 393-411 | Article | MR 1909652 | Zbl 1011.32016