Continuous Measures on Homogenous Spaces
Annales de l'Institut Fourier, Volume 59 (2009) no. 6, p. 2169-2174

In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.

Dans ce travail, on étend la caractérisation des mesures continues, due à Wiener, à des variétés compactes et homogènes. Pour des groupes de Lie compacts et semisimples, et pour des nilvariétés, on trouve des conditions nécessaires et suffisantes pour qu’une mesure de probabilité soit continue. Les démonstrations s’appuient sur des propriétés élémentaires des noyaux de la chaleur.

DOI : https://doi.org/10.5802/aif.2487
Classification:  60Bxx,  60B15,  30Cxx,  30C40
Keywords: Probability measures on groups, heat kernels
@article{AIF_2009__59_6_2169_0,
     author = {Bj\"orklund, Michael and Fish, Alexander},
     title = {Continuous Measures  on Homogenous Spaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {6},
     year = {2009},
     pages = {2169-2174},
     doi = {10.5802/aif.2487},
     mrnumber = {2640917},
     zbl = {1194.60009},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_6_2169_0}
}
Björklund, Michael; Fish, Alexander. Continuous Measures  on Homogenous Spaces. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2169-2174. doi : 10.5802/aif.2487. http://www.numdam.org/item/AIF_2009__59_6_2169_0/

[1] Anker, Jean-Philippe; Ostellari, Patrick The heat kernel on noncompact symmetric spaces. Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, Tome 210 (2003), pp. 27-46 (Providence, RI) | MR 2018351 | Zbl 1036.22005

[2] Anoussis, M.; Bisbas, A. Continuous measures on compact Lie groups, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 4, pp. 1277-1296 | Article | Numdam | MR 1799746 | Zbl 0969.43001

[3] Berger, M A panoramic view of Riemannian geometry, Springer-Verlag, Berlin (2003) (xxiv+824 pp. ISBN: 3-540-65317-1) | MR 2002701 | Zbl 1038.53002

[4] Chavel, I. Riemannian Geometry: A Modern Introduction, Cambridge University Press, New York (1994) | MR 2229062 | Zbl 0819.53001

[5] Deninger, C.; Singhof, W. The e-invariant and the spectrum for compact nilmanifolds covered by Heisenberg groups, Invent. Math., Tome 78 (1984), pp. 101-112 | Article | MR 762355 | Zbl 0558.55010

[6] Fegan, H.D. The heat equation on a compact Lie group, Trans. Amer. Math. Soc., Tome 246 (1978), pp. 339-357 | Article | MR 515542 | Zbl 0402.22001

[7] Graham, C. C.; Mcgehee, O. C. Essays in Commutative Harmonic Analysis, Springer-Verlag, New York (1979) | MR 550606 | Zbl 0439.43001

[8] Taylor, M. Noncommutative Harmonic Analysis, Math. Surveys and Monogr, American Math. Society, Providence, R.I. (1986) no. 22 | MR 852988 | Zbl 0604.43001