Limit laws for transient random walks in random environment on
Annales de l'Institut Fourier, Volume 59 (2009) no. 6, p. 2469-2508

We consider transient random walks in random environment on with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level n converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.

Nous considérons les marches aléatoires en milieu aléatoire sur transientes et de vitesse nulle. D’après un résultat classique de Kesten, Kozlov et Spitzer, le temps d’atteinte du niveau n converge en loi, après renormalisation, vers une variable aléatoire stable positive, mais ces auteurs n’obtiennent pas la description de son paramètre. Une preuve différente est présentée, qui permet d’obtenir une caractérisation complète de cette loi stable. Le cas d’environnements de Dirichlet s’avère être particulièrement explicite.

DOI : https://doi.org/10.5802/aif.2497
Classification:  60K37,  60F05,  60F17,  60E07,  60E10
Keywords: Random walks in random environment, stable laws, fluctuations theory for random walks, Beta distributions
@article{AIF_2009__59_6_2469_0,
     author = {Enriquez, Nathana\"el and Sabot, Christophe and Zindy, Olivier},
     title = {Limit laws for transient random walks in random environment on $\mathbb{Z}$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {6},
     year = {2009},
     pages = {2469-2508},
     doi = {10.5802/aif.2497},
     mrnumber = {2640927},
     zbl = {1200.60093},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_6_2469_0}
}
Enriquez, Nathanaël; Sabot, Christophe; Zindy, Olivier. Limit laws for transient random walks in random environment on $\mathbb{Z}$. Annales de l'Institut Fourier, Volume 59 (2009) no. 6, pp. 2469-2508. doi : 10.5802/aif.2497. http://www.numdam.org/item/AIF_2009__59_6_2469_0/

[1] Alili, S. Asymptotic behaviour for random walks in random environments, J. Appl. Probab., Tome 36 (1999), pp. 334-349 | Article | MR 1724844 | Zbl 0946.60046

[2] Alili, S. Persistent random walks in stationary environment, J. Stat. Phys., Tome 94 (1999), pp. 469-494 | Article | MR 1675361 | Zbl 0936.60090

[3] Ben Arous, G.; Černý, J. Dynamics of trap models, Ecole d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, Elsevier (Lecture Notes in Math.) (2006), pp. 331-394

[4] Chamayou, J.-F.; Letac, G. Explicit stationary distributions for compositions of random functions and products of random matrices, J. Theoret. Probab., Tome 4 (1991), pp. 3-36 | Article | MR 1088391 | Zbl 0728.60012

[5] Dembo, A.; Zeitouni, O. Large deviations techniques and applications, Springer-Verlag, New York, Applications of Mathematics (New York), Tome 38 (1998) | MR 1619036 | Zbl 0896.60013

[6] Enriquez, N.; Sabot, C.; Zindy, O. A probabilistic representation of constants in Kesten’s renewal theorem, Probab. Theory Related Fields, Tome 144 (2009), pp. 581-613 | Article | MR 2496443 | Zbl 1168.60034

[7] Feller, W. An introduction to probability theory and its applications. Vol. II., John Wiley & Sons Inc., New York, Second edition (1971) | MR 270403 | Zbl 0219.60003

[8] Goldie, C. M. Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Tome 1 (1991), pp. 126-166 | Article | MR 1097468 | Zbl 0724.60076

[9] Goldsheid, I. Ya. Simple transient random walks in one-dimensional random environment: the central limit theorem, Probab. Theory Related Fields, Tome 139 (2007), pp. 41-64 | Article | MR 2322691 | Zbl 1134.60065

[10] Golosov, A. O. Limit distributions for random walks in a random environment, Soviet Math. Dokl., Tome 28 (1986), pp. 18-22

[11] Hu, Y.; Shi, Z.; Yor, M. Rates of convergence of diffusions with drifted Brownian potentials, Trans. Amer. Math. Soc., Tome 351 (1999), pp. 3915-3934 | Article | MR 1637078 | Zbl 0932.60083

[12] Iglehart, D. L. Extreme values in the GI/G/1 queue, Ann. Math. Statist., Tome 43 (1972), pp. 627-635 | Article | MR 305498 | Zbl 0238.60072

[13] Kawazu, K.; Tanaka, H. A diffusion process in a Brownian environment with drift, J. Math. Soc. Japan, Tome 49 (1997), pp. 189-211 | Article | MR 1601361 | Zbl 0914.60058

[14] Kesten, H. Random difference equations and renewal theory for products of random matrices, Acta Math., Tome 131 (1973), pp. 207-248 | Article | MR 440724 | Zbl 0291.60029

[15] Kesten, H. The limit distribution of Sinai’s random walk in random environment, Physica A, Tome 138 (1986), pp. 299-309 | Article | MR 865247 | Zbl 0666.60065

[16] Kesten, H.; Kozlov, M. V.; Spitzer, F. A limit law for random walk in a random environment, Compositio Math., Tome 30 (1975), pp. 145-168 | Numdam | MR 380998 | Zbl 0388.60069

[17] Mayer-Wolf, E.; Roitershtein, A.; Zeitouni, O. Limit theorems for one-dimensional transient random walks in Markov environments, Ann. Inst. H. Poincaré Probab. Statist., Tome 40 (2004), pp. 635-659 | Article | Numdam | MR 2086017 | Zbl 1070.60024

[18] Peterson, J.; Zeitouni, O. Quenched limits for transient, zero speed one-dimensional random walk in random environment, Ann. Probab., Tome 37 (2009), pp. 143-188 | Article | MR 2489162 | Zbl pre05541340

[19] Siegmund, D. Note on a stochastic recursion, State of the art in probability and statistics (Leiden, 1999), Inst. Math. Statist., Beachwood, OH (IMS Lecture Notes Monogr. Ser., 36) (2001), pp. 547-554 | MR 1836580

[20] Sinai, Ya. G. The limiting behavior of a one-dimensional random walk in a random medium, Th. Probab. Appl., Tome 27 (1982), pp. 256-268 | Article | MR 657919 | Zbl 0505.60086

[21] Singh, A. Rates of convergence of a transient diffusion in a spectrally negative Lévy potential, Ann. Probab., Tome 36 (2008), pp. 279-318 | Article | MR 2370605 | Zbl 1130.60084

[22] Solomon, F. Random walks in a random environment, Ann. Probab., Tome 3 (1975), pp. 1-31 | Article | MR 362503 | Zbl 0305.60029

[23] Zeitouni, O. Random walks in random environment, Lectures on probability theory and statistics, Springer, Berlin (Lecture Notes in Math.) Tome 1837 (2004), pp. 189-312 | MR 2071631 | Zbl 1060.60103