Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces  [ Uniforme minimalité, inconditionnalité et interpolation dans des espaces invariants par l’adjoint du shift ]
Annales de l'Institut Fourier, Tome 60 (2010) no. 6, p. 1871-1903
Nous étudions des relations entre l’uniforme minimalité, l’inconditionnalité et l’interpolation pour des familles de noyaux reproduisants dans des espaces invariants par l’adjoint du shift. Cette classe d’espaces contient en particulier les espaces de Paley-Wiener pour lesquels il est connu que l’uniforme minimalité n’entraîne en général pas l’inconditionalité. Par conséquent, et contrairement à la situation dans les espaces de Hardy habituels (et dans d’autres échelles d’espaces), il semble nécessaire de changer la taille de l’espace afin de déduire l’inconditionnalité (ou l’interpolation) de l’uniforme minimalité. Un tel changement de la taille de l’espace peut être opéré de deux façons différentes : en diminuant l’exposant d’intégration, ou en “augmentant” la fonction définissante de l’espace (ce qui revient à augmenter le type dans le cas des espaces de Paley-Wiener). Les inégalités de Khinchin jouent un rôle central dans les preuves de nos résultats principaux.
We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality or interpolation from uniform minimality. Such a change can take two directions: lowering the power of integration, or “increasing” the defining inner function (e.g. increasing the type in the case of Paley-Wiener space). Khinchin’s inequalities play a substantial role in the proofs of our main results.
DOI : https://doi.org/10.5802/aif.2575
Classification:  30D55,  30E05,  46B09
Mots clés: uniforme minimalité, bases inconditionnelles, espaces modèles, espaces de Paley-Wiener, interpolation, fonctions intérieures à une composante
@article{AIF_2010__60_6_1871_0,
     author = {Amar, Eric and Hartmann, Andreas},
     title = {Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {6},
     year = {2010},
     pages = {1871-1903},
     doi = {10.5802/aif.2575},
     mrnumber = {2791649},
     zbl = {1213.30068},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2010__60_6_1871_0}
}
Amar, Eric; Hartmann, Andreas. Uniform minimality, unconditionality and interpolation in backward shift invariant subspaces. Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 1871-1903. doi : 10.5802/aif.2575. http://www.numdam.org/item/AIF_2010__60_6_1871_0/

[1] Aleksandrov, A. B. On embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci., New York, Tome 110 (1999) no. 5, pp. 2907-2929 | Article | MR 1734326 | Zbl 1060.30043

[2] Amar, Eric On interpolation of interpolating sequences, Indag. Math. (N.S.), Tome 18 (2007) no. 2, pp. 177-187 | Article | MR 2352673 | Zbl 1140.32004

[3] Amar, Eric On linear extension for interpolating sequences, Stud. Math., Tome 186 (2008) no. 3, pp. 251-265 | Article | MR 2403667 | Zbl pre05272592

[4] Beurling, Arne The collected works of Arne Beurling. Volume 1: Complex analysis. Volume 2: Harmonic analysis. Ed. by Lennart Carleson, Paul Malliavin, John Neuberger, John Wermer, Contemporary Mathematicians. Boston etc.: Birkhäuser Verlag. xx, 475 p./v.1; xx, 389 p./v.2 (1989) | MR 1057613 | Zbl 0732.01042

[5] Boricheva, Inna Geometric properties of projections of reproducing kernels on z * -invariant subspaces of H 2 , J. Funct. Anal., Tome 161 (1999) no. 2, pp. 397-417 | Article | MR 1674647 | Zbl 0939.30005

[6] Carleson, Lennart An interpolation problem for bounded analytic functions, Amer. J. Math., Tome 80 (1958), pp. 921-930 | Article | MR 117349 | Zbl 0085.06504

[7] Carleson, Lennart Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2), Tome 76 (1962), pp. 547-559 | Article | MR 141789 | Zbl 0112.29702

[8] Cohn, Bill Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math., Tome 103 (1982) no. 2, pp. 347-364 http://projecteuclid.org/getRecord?id=euclid.pjm/1102723968 | MR 705235 | Zbl 0509.30026

[9] Flornes, Kristin M. Sampling and interpolation in the Paley-Wiener spaces L π p ,0<p1, Publ. Mat., Tome 42 (1998) no. 1, pp. 103-118 | MR 1628146 | Zbl 0937.42016

[10] Hartmann, Andreas; Sarason, Donald; Seip, Kristian Surjective Toeplitz operators, Acta Sci. Math. (Szeged), Tome 70 (2004) no. 3-4, pp. 609-621 | MR 2107530 | Zbl 1076.30038

[11] Hruščëv, S. V.; Nikolskiĭ, N. K.; Pavlov, B. S. Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980), Springer, Berlin (Lecture Notes in Math.) Tome 864 (1981), pp. 214-335 | MR 643384 | Zbl 0466.46018

[12] Levin, B. Ya. Lectures on entire functions, American Mathematical Society, Providence, RI, Translations of Mathematical Monographs, Tome 150 (1996) (In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko) | MR 1400006 | Zbl 0856.30001

[13] Lindenstrauss, J.; Zippin, M. Banach spaces with a unique unconditional basis, J. Functional Analysis, Tome 3 (1969), pp. 115-125 | Article | MR 236668 | Zbl 0174.17201

[14] Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. I: Sequence spaces. II. Function spaces. Repr. of the 1977 and 1979 ed., Classics in Mathematics. Berlin: Springer-Verlag. xx, 432 p. (1996) | MR 500056 | Zbl 0852.46015

[15] Lyubarskii, Yurii I.; Seip, Kristian Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s (A p ) condition, Rev. Mat. Iberoamericana, Tome 13 (1997) no. 2, pp. 361-376 | MR 1617649 | Zbl 0918.42003

[16] Minkin, A. M. The reflection of indices and unconditional bases of exponentials, Algebra i Analiz, Tome 3 (1991) no. 5, pp. 109-134 | MR 1186238 | Zbl 0774.42022

[17] Nikolskiĭ, N. K. Bases of invariant subspaces and operator interpolation, Trudy Mat. Inst. Steklov., Tome 130 (1978), p. 50-123, 223 (Spectral theory of functions and operators) | MR 505684 | Zbl 0461.46012

[18] Nikolskiĭ, N. K. Treatise on the shift operator, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 273 (1986) (Spectral function theory, With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre) | MR 827223 | Zbl 0587.47036

[19] Nikolskiĭ, N. K. Operators, functions, and systems: an easy reading, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, 92 et 93 (2002) (Vol. 1, Hardy, Hankel and Toeplitz. Vol. 2, Model operators and systems, Translated from the French by Andreas Hartmann and revised by the author) | Zbl 1007.47001

[20] Pełczyński, A. Projections in certain Banach spaces, Studia Math., Tome 19 (1960), pp. 209-228 | MR 126145 | Zbl 0104.08503

[21] Rochberg, Richard Toeplitz operators on weighted H p spaces, Indiana Univ. Math. J., Tome 26 (1977) no. 2, pp. 291-298 | Article | MR 458228 | Zbl 0373.47018

[22] Rosenthal, Haskell P. On the subspaces of L p (p>2) spanned by sequences of independent random variables, Israel J. Math., Tome 8 (1970), pp. 273-303 | Article | MR 271721 | Zbl 0213.19303

[23] Schuster, Alexander P.; Seip, Kristian A Carleson-type condition for interpolation in Bergman spaces, J. Reine Angew. Math., Tome 497 (1998), pp. 223-233 | Article | MR 1617432 | Zbl 0916.30037

[24] Schuster, Alexander P.; Seip, Kristian Weak conditions for interpolation in holomorphic spaces, Publ. Mat., Tome 44 (2000) no. 1, pp. 277-293 | MR 1775765 | Zbl 0962.30029

[25] Seip, Kristian On the connection between exponential bases and certain related sequences in L 2 (-π,π), J. Funct. Anal., Tome 130 (1995) no. 1, pp. 131-160 | Article | MR 1331980 | Zbl 0872.46006

[26] Shapiro, H. S.; Shields, A. L. On some interpolation problems for analytic functions, Amer. J. Math., Tome 83 (1961), pp. 513-532 | Article | MR 133446 | Zbl 0112.29701

[27] Singer, Ivan Bases in Banach spaces. I, Springer-Verlag, New York (1970) (Die Grundlehren der mathematischen Wissenschaften, Band 154) | MR 298399 | Zbl 0198.16601

[28] Treil, S. R.; Volberg, A. L. Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator, Algebra i Analiz, Tome 7 (1995) no. 6, pp. 205-226 | MR 1381983 | Zbl 0852.42006