Pour un entier strictement positif et un nombre réel , on note le supremum des nombres réels pour lesquels il existe des entiers arbitrairement grands tels que sont tous inférieurs à . Ici, désigne la distance à l’entier le plus proche. Nous étudions l’ensemble des valeurs prises par la function et, plus généralement, nous nous intéressons au spectre de . Nous formulons également plusieurs problèmes ouverts.
For a positive integer and a real number , let denote the supremum of the real numbers such that there are arbitrarily large positive integers such that are all less than . Here, denotes the distance to the nearest integer. We study the set of values taken by the function and, more generally, we are concerned with the joint spectrum of . We further address several open problems.
Keywords: Simultaneous approximation, exponent of approximation
Mot clés : approximation simultanée, exposant d’approximation
@article{AIF_2010__60_6_2165_0, author = {Bugeaud, Yann}, title = {On simultaneous rational approximation to a real number and its integral powers}, journal = {Annales de l'Institut Fourier}, pages = {2165--2182}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {6}, year = {2010}, doi = {10.5802/aif.2580}, zbl = {1229.11100}, mrnumber = {2791654}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2580/} }
TY - JOUR AU - Bugeaud, Yann TI - On simultaneous rational approximation to a real number and its integral powers JO - Annales de l'Institut Fourier PY - 2010 SP - 2165 EP - 2182 VL - 60 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2580/ DO - 10.5802/aif.2580 LA - en ID - AIF_2010__60_6_2165_0 ER -
%0 Journal Article %A Bugeaud, Yann %T On simultaneous rational approximation to a real number and its integral powers %J Annales de l'Institut Fourier %D 2010 %P 2165-2182 %V 60 %N 6 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2580/ %R 10.5802/aif.2580 %G en %F AIF_2010__60_6_2165_0
Bugeaud, Yann. On simultaneous rational approximation to a real number and its integral powers. Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 2165-2182. doi : 10.5802/aif.2580. http://archive.numdam.org/articles/10.5802/aif.2580/
[1] Palindromic continued fractions, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 1557-1574 | DOI | Numdam | MR | Zbl
[2] Rational points near manifolds and metric Diophantine approximation (preprint)
[3] Diophantine approximation on planer curves and the distribution of rational points, Ann. of Math., Volume 166 (2007), pp. 367-426 (with an appendix by R.C. Vaughan: ”Sums of two squares near perfect squares”) | DOI | MR | Zbl
[4] Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith., Volume 42 (1983), pp. 219-253 (in Russian), english transl. in Amer. Math. Soc. Transl. 140 (1988), p. 15–44 | MR | Zbl
[5] Simultaneous Diophantine approximation on polynomial curves, Mathematika, Volume 56 (2010), pp. 77-85 | DOI | MR
[6] Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Cambridge University Press, 2004 | MR | Zbl
[7] Diophantine approximation and Cantor sets, Math. Ann., Volume 341 (2008), pp. 677-684 | DOI | MR | Zbl
[8] Multiplicative Diophantine approximation, Dynamical systems and Diophantine Approximation (to appear) (proceedings of the conference held at the Institut Henri Poincaré, S.M.F.)
[9] On transfer inequalities in Diophantine approximation, II (Math. Z., to appear)
[10] Exponents of Diophantine Approximation and Sturmian Continued Fractions, Ann. Inst. Fourier (Grenoble), Volume 55 (2005), pp. 773-804 | DOI | EuDML | Numdam | MR | Zbl
[11] Exponents of Diophantine approximation, Diophantine Geometry Proceedings, Volume 4, Scuola Normale Superiore Pisa, Ser. CRM (2007), pp. 101-121 | MR | Zbl
[12] Zur Berechnung der Mahlerschen Funktionen , J. reine angew. Math., Volume 232 (1968), pp. 122-135 | DOI | MR | Zbl
[13] Über die simultanen Diophantische Approximationen, Math. Z., Volume 33 (1931), pp. 505-543 | DOI | MR
[14] Über einen Satz von A. Khintchine II, Acta Arith., Volume 2 (1936), pp. 1-22 | Zbl
[15] On fractal measures and Diophantine approximation, Selecta Math., Volume 10 (2004), pp. 479-523 | MR | Zbl
[16] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002 | MR | Zbl
[17] On transfer inequalities in Diophantine Approximation, Analytic Number Theory in Honour of Klaus Roth, Cambridge University Press, 2009, pp. 306-314 | MR | Zbl
[18] Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math., Volume 166 (1932), pp. 118-150 | DOI | Zbl
[19] On heights of algebraic subspaces and diophantine approximations, Annals of Math., Volume 85 (1967), pp. 430-472 | DOI | MR | Zbl
[20] Mahler’s problem in metric number theory, Nauka i Tehnika, Minsk, 1967 (in Russian), english translation by B. Volkmann, Translations of Mathematical Monographs, Vol. 25, American Mathematical Society, Providence, R.I., 1969 | Zbl
[21] Diophantine approximation on planar curves: the convergence theory, Invent. Math., Volume 166 (2006), pp. 103-124 | DOI | MR | Zbl
[22] Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math., Volume 206 (1961), pp. 67-77 | DOI | MR | Zbl
Cité par Sources :