Contact Homology, Capacity and Non-Squeezing in 2n ×S 1 via Generating Functions  [ Homologie, capacité et non tassement en géométrie de contact sur 2n ×S 1 , comme application des fonctions génératrices ]
Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 145-185.

Inspirés par le travail de Bhupal, nous étendons à la géométrie de contact la notion de capacité de Viterbo ainsi que la construction, dûe à Traynor, d’homologie symplectique. Comme application, nous obtenons une démonstration alternative du Théorème de Non-Tassement d’Eliashberg, Kim et Polterovitch.

Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.

DOI : https://doi.org/10.5802/aif.2600
Classification : 53D35
Mots clés : non tassement de contact, capacité de contact, homologie de contact, ordonnabilité des varitétés de contact, fonctions génératrices
@article{AIF_2011__61_1_145_0,
     author = {Sandon, Sheila},
     title = {Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions},
     journal = {Annales de l'Institut Fourier},
     pages = {145--185},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {1},
     year = {2011},
     doi = {10.5802/aif.2600},
     mrnumber = {2828129},
     zbl = {1222.53091},
     language = {en},
     url = {http://archive.numdam.org/item/AIF_2011__61_1_145_0/}
}
Sandon, Sheila. Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions. Annales de l'Institut Fourier, Tome 61 (2011) no. 1, pp. 145-185. doi : 10.5802/aif.2600. http://archive.numdam.org/item/AIF_2011__61_1_145_0/

[1] Bhupal, M. Legendrian intersections in the 1-jet bundle (1998) (Ph. D. Thesis)

[2] Bhupal, M. A partial order on the group of contactomorphisms of 2n+1 via generating functions, Turkish J. Math., Volume 25 (2001), pp. 125-135 | MR 1829083 | Zbl 1007.53067

[3] Biran, P.; Polterovich, L.; Salamon, D. Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J., Volume 119 (2003), pp. 65-118 | Article | MR 1991647 | Zbl 1034.53089

[4] Chaperon, M. Une idée du type “géodésiques brisées” pour les systémes hamiltoniens, C. R. Acad. Sci. Paris, Sér. I Math., Volume 298 (1984), pp. 293-296 | MR 765426 | Zbl 0576.58010

[5] Chaperon, M.; H. Hofer et al. On generating families, The Floer Memorial Volume (Progr. Math.), Volume 133, Birkhauser, Basel, 1995, pp. 283-296 | MR 1362831 | Zbl 0837.58003

[6] Chekanov, Y. Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl., Volume 30 (1996), pp. 118-128 | Article | MR 1402081 | Zbl 0873.58017

[7] Chekanov, Y.; van Koert, O.; Schlenk, F. Minimal atlases of closed contact manifolds, arXiv:0807.3047

[8] Chekanov, Y.; Pushkar, P. Combinatorics of fronts of Legendrian links, and Arnold’s 4-conjectures, Russian Math. Surveys, Volume 60 (2005), pp. 95-149 | Article | MR 2145660 | Zbl 1085.57008

[9] Chernov, V.; Nemirovski, S. Legendrian links, causality, and the Low conjecture, arXiv:0810.5091v2

[10] Chernov, V.; Nemirovski, S. Non-negative Legendrian isotopy in ST * M, arXiv:0905.0983

[11] Cieliebak, K.; Ginzburg, V.; Kerman, E. Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv., Volume 79 (2004), pp. 554-581 | Article | MR 2081726 | Zbl 1073.53118

[12] Colin, V.; Ferrand, E.; Pushkar, P. Positive loops of Legendrian embeddings (2007) (preprint)

[13] Eiseman, P.; Lima, J.; Sabloff, J.; Traynor, L. A partial ordering on slices of planar Lagrangians, J. Fixed Point Theory Appl., Volume 3 (2008), pp. 431-447 | Article | MR 2434456 | Zbl 1149.53318

[14] Eliashberg, Y. New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc., Volume 4 (1991), pp. 513-520 | Article | MR 1102580 | Zbl 0733.58011

[15] Eliashberg, Y.; Gromov, M. Lagrangian intersection theory : finite-dimensional approach, Geometry of differential equations (Amer. Math. Soc. Transl. Ser. 2), Volume 186, Amer. Math. Soc., Providence, RI, 1998 p. 27–118, see also : Lagrangian intersections and the stable Morse theory Boll. Un. Mat. Ital., B(7) 11 suppl. (1997), p. 289–326 | MR 1732407 | Zbl 0919.58015

[16] Eliashberg, Y.; Kim, S. S.; Polterovich, L. Geometry of contact transformations and domains: orderability vs squeezing, Geom. and Topol., Volume 10 (2006), pp. 1635-1747 | Article | MR 2284048 | Zbl 1134.53044

[17] Eliashberg, Y.; Polterovich, L. Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal., Volume 10 (2000), pp. 1448-1476 | Article | MR 1810748 | Zbl 0986.53036

[18] Ferrand, E.; Pushkar, P. Morse theory and global coexistence of singularities on wave fronts, J. London Math. Soc., Volume 74 (2006), pp. 527-544 | Article | MR 2269593 | Zbl 1113.57015

[19] Fuchs, D.; Rutherford, D. Generating families and Legendrian contact homology in the standard contact space, arXiv:0807.4277

[20] Geiges, H. An Introduction to Contact Topology, Cambridge University Press, 2008 | MR 2397738 | Zbl 1153.53002

[21] Ginzburg, V.; Gürel, B. Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J., Volume 123 (2004), pp. 1-47 | Article | MR 2060021 | Zbl 1066.53138

[22] Givental, A. Nonlinear generalization of the Maslov index, Theory of singularities and its applications (Adv. Soviet Math.), Volume 1, Amer. Math. Soc., Providence, RI, 1990, pp. 71-103 | MR 1089671 | Zbl 0728.53024

[23] Givental, A.; H. Hofer et al. A symplectic fixed point theorem for toric manifolds, The Floer Memorial Volume (Progr. Math.), Volume 133, Birkhauser, Basel, 1995, pp. 445-481 | MR 1362837 | Zbl 0835.55001

[24] Gromov, M. Pseudoholomorphic curves in symplectic manifolds, Invent.Math., Volume 82 (1985), pp. 307-347 | Article | MR 809718 | Zbl 0592.53025

[25] Hermann, D. Inner and outer Hamiltonian capacities, Bull. Soc. Math. France, Volume 132 (2004), pp. 509-541 | Numdam | MR 2131902 | Zbl 1083.53083

[26] Hofer, H.; Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994 | MR 1306732 | Zbl 0805.58003

[27] Hörmander, L. Fourier integral operators I, Acta Math., Volume 127 (1971), pp. 17-183 | Article | MR 388463 | Zbl 0212.46601

[28] Jordan, J.; Traynor, L. Generating family invariants for Legendrian links of unknots, Algebr. Geom. Topol., Volume 6 (2006), pp. 895-933 | Article | MR 2240920 | Zbl 1130.57018

[29] Laudenbach, F.; Sikorav, J. C. Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibre cotangent, Invent. Math., Volume 82 (1985), pp. 349-357 | Article | MR 809719 | Zbl 0592.58023

[30] McDuff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford University Press, 1998 | MR 1698616 | Zbl 1066.53137

[31] Milinković, D. Morse homology for generating functions of Lagrangian submanifolds, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 3953-3974 | Article | MR 1475690 | Zbl 0938.53043

[32] Sikorav, J. C. Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C.R. Acad. Sci. Paris, Sér. I Math., Volume 302 (1986), pp. 119-122 | MR 830282 | Zbl 0602.58019

[33] Sikorav, J. C. Problemes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv., Volume 62 (1987), pp. 62-73 | Article | MR 882965 | Zbl 0684.58015

[34] Théret, D. Utilisation des fonctions génératrices en géométrie symplectique globale (1995) (Ph. D. Thesis)

[35] Théret, D. Rotation numbers of Hamiltonian isotopies in complex projective spaces, Duke Math. J., Volume 94 (1998), pp. 13-27 | Article | MR 1635892 | Zbl 0976.53093

[36] Théret, D. A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl., Volume 96 (1999), pp. 249-266 | Article | MR 1709692 | Zbl 0952.53037

[37] Traynor, L. Symplectic Homology via generating functions, Geom. Funct. Anal., Volume 4 (1994), pp. 718-748 | Article | MR 1302337 | Zbl 0822.58020

[38] Traynor, L. Generating Function Polynomials for Legendrian Links, Geom. and Topol., Volume 5 (2001), pp. 719-760 | Article | MR 1871403 | Zbl 1030.53086

[39] Viterbo, C. Functors and computations in Floer homology with applications, Part II (Preprint) | Zbl 0954.57015

[40] Viterbo, C. Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systémes hamiltoniens, Bull. Soc. Math. France, Volume 115 (1987), pp. 361-390 | Numdam | MR 926533 | Zbl 0639.58018

[41] Viterbo, C. Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992), pp. 685-710 | Article | MR 1157321 | Zbl 0735.58019