Existence results for the prescribed Scalar curvature on S 3  [ Résultats d’existence pour la courbure scalaire prescrite sur S 3  ]
Annales de l'Institut Fourier, Tome 61 (2011) no. 3, p. 971-986
Ce papier est consacré à l’existence des métriques conforme sur S 3 avec courbure scalaire prescrite. Nous étendons les critères d’existence bien connus de Bahri-Coron.
This paper is devoted to the existence of conformal metrics on S 3 with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
DOI : https://doi.org/10.5802/aif.2634
Classification:  58E05,  35J65,  35C21,  35B40
Mots clés: courbure scalaire, points critiques à l’infini, méthode topologique
@article{AIF_2011__61_3_971_0,
     author = {Mahmoud, Randa Ben and Chtioui, Hichem},
     title = {Existence results for the prescribed Scalar curvature on $S^{3}$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {3},
     year = {2011},
     pages = {971-986},
     doi = {10.5802/aif.2634},
     mrnumber = {2918723},
     zbl = {1235.35118},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2011__61_3_971_0}
}
Mahmoud, Randa Ben; Chtioui, Hichem. Existence results for the prescribed Scalar curvature on $S^{3}$. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 971-986. doi : 10.5802/aif.2634. http://www.numdam.org/item/AIF_2011__61_3_971_0/

[1] Aubin, T. Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures et Appl., Tome 55 (1976), pp. 269-296 | MR 431287 | Zbl 0336.53033

[2] Aubin, T.; Bahri, A. Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl., Tome 76 (1997) no. 10, pp. 843-850 | Article | MR 1489940 | Zbl 0916.58041

[3] Bahri, A. Critical point at infinity in some variational problems, Longman Sci. Tech., Harlow, Pitman Res. Notes Math, Ser, Tome 182 (1989) | MR 1019828 | Zbl 0676.58021

[4] Bahri, A. An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J., Tome 81 (1996), pp. 323-466 | Article | MR 1395407 | Zbl 0856.53028

[5] Bahri, A.; Coron, J. M. The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Tome 95 (1991), pp. 106-172 | Article | MR 1087949 | Zbl 0722.53032

[6] Bahri, A.; Rabinowitz, P. Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 8 (1991), pp. 561-649 | Numdam | MR 1145561 | Zbl 0745.34034

[7] Ben Ayed, M.; Chen, Y.; Chtioui, H.; Hammami, M. On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Tome 84 (1996), pp. 633-677 | Article | MR 1408540 | Zbl 0862.53034

[8] Chang, S. A.; Gursky, M. J.; Yang, P. C. The scalar curvature equation on 2 and 3 spheres, Calc. Var., Tome 1 (1993), pp. 205-229 | Article | MR 1261723 | Zbl 0822.35043

[9] Chang, S. Y.; Yang, P. A perturbation result in prescribing scalar curvature on S n , Duke Math. J., Tome 64 (1991), pp. 27-69 (Addendum 71 (1993), p. 333–335) | Article | MR 1131392 | Zbl 0739.53027

[10] Chen, C. C.; Lin, C. S. Prescribing scalar curvature on S n , Part I: Apriori estimates, J. differential geometry, Tome 57 (2001), pp. 67-171 | MR 1871492 | Zbl 1043.53028

[11] Chtioui, H. Prescribing the Scalar Curvature Problem on Three and Four Manifolds, Advanced Nonlinear Studies, Tome 3 (2003), pp. 457-470 | MR 2017242 | Zbl 1051.53031

[12] Conley, C. C. Isolated invariant sets and the Morse index, AMS, CBMS Reg. conf-Series in Math, Tome 38 (1978) | MR 511133 | Zbl 0397.34056

[13] Escobar, J.; Schoen, R. Conformal metrics with prescribed scalar curvature, Inventiones Math., Tome 86 (1986), pp. 243-254 | Article | MR 856845 | Zbl 0628.53041

[14] Floer, A. Cuplength Estimates on Lagrangian intersections, Comm. Pure and Applied Math, Tome XLII (1989) no. 4, pp. 335-356 | Article | MR 990135 | Zbl 0683.58017

[15] Kazdan, J.; Warner, J. Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvature, Annals of Math., Tome 101 (1975), pp. 317-331 | Article | MR 375153 | Zbl 0297.53020

[16] Li, Y. Y. Prescribing scalar curvature on S 3 , S 4 and related problems, J. Functional Analysis, Tome 118 (1993), pp. 43-118 | Article | MR 1245597 | Zbl 0790.53040

[17] Li, Y. Y. Prescribing scalar curvature on S n and related topics, Part I, Journal of Differential Equations, Tome 120 (1995), pp. 319-410 | Article | MR 1347349 | Zbl 0827.53039

[18] Li, Y. Y. Prescribing scalar curvature on S n and related topics, Part II: existence and compactness, Comm. Pure Appl. Math., Tome 49 (1996), pp. 541-579 | Article | MR 1383201 | Zbl 0849.53031

[19] Lin, C. S. On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci, Tome 4 (1998), pp. 107-130 | Numdam | MR 1658881 | Zbl 0974.53032

[20] Lions, P. L. The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, Tome 1 (1985), p. I: 165-201, II: 45–121 | MR 850686 | Zbl 0704.49006

[21] Milnor, J. Lectures on the h-cobordism theorem, Princeton University Press (1965) | MR 190942 | Zbl 0161.20302

[22] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Tome 20 (1984), pp. 479-495 | MR 788292 | Zbl 0576.53028

[23] Schoen, R.; Zhang, D. Prescribed scalar curvature on the n-sphere, Calculus of Variations and Partial Differential Equations, Tome 4 (1996), pp. 1-25 | Article | MR 1379191 | Zbl 0843.53037

[24] Struwe, M. A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., Tome 187 (1984), pp. 511-517 | Article | MR 760051 | Zbl 0535.35025