Classification: 14J60, 14D20
Mots clés: paires de Hitchin semistables, catégories Tannakiennes, schémas en groupes, produit tensoriel
@article{AIF_2011__61_6_2361_0, author = {Balaji, V. and Parameswaran, A.J.}, title = {Tensor product theorem for Hitchin pairs -- An algebraic approach}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {61}, number = {6}, year = {2011}, pages = {2361-2403}, doi = {10.5802/aif.2677}, mrnumber = {2976315}, zbl = {1248.14046}, language = {en}, url = {http://www.numdam.org/item/AIF_2011__61_6_2361_0} }
Balaji, V.; Parameswaran, A.J. Tensor product theorem for Hitchin pairs – An algebraic approach. Annales de l'Institut Fourier, Tome 61 (2011) no. 6, pp. 2361-2403. doi : 10.5802/aif.2677. http://www.numdam.org/item/AIF_2011__61_6_2361_0/
[1] Semistable principal bundles. II. Positive characteristics, Transform. Groups, Tome 8 (2003) no. 1, pp. 3-36 | Article | MR 1959761 | Zbl 1084.14013
[2] Étale slices for algebraic transformation groups in characteristic , Proc. London Math. Soc. (3), Tome 51 (1985) no. 2, pp. 295-317 | Article | MR 794118 | Zbl 0604.14037
[3] Chiral algebras, American Mathematical Society, Providence, RI, American Mathematical Society Colloquium Publications, Tome 51 (2004) | MR 2058353 | Zbl 1138.17300
[4] Yang-Mills equation for stable Higgs sheaves, Internat. J. Math., Tome 20 (2009) no. 5, pp. 541-556 | Article | MR 2526306 | Zbl 1169.53017
[5] Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat., Tome 42 (1978) no. 6, pp. 1227-1287 | MR 522939 | Zbl 0439.14002
[6] Tannaka categories, Springer Lecture Notes in Mathematics, Tome 900 (1982), pp. 101-228 | Article | Zbl 0477.14004
[7] On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math., Tome 101 (1979) no. 1, pp. 77-85 | Article | MR 527826 | Zbl 0431.14005
[8] Uniform instability in reductive groups, J. Reine Angew. Math., Tome 303/304 (1978), pp. 74-96 | MR 514673 | Zbl 0386.20020
[9] The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Tome 55 (1987) no. 1, pp. 59-126 | Article | MR 887284 | Zbl 0634.53045
[10] Stable bundles and integrable systems, Duke Math. J., Tome 54 (1987) no. 1, pp. 91-114 | Article | MR 885778 | Zbl 0627.14024
[11] Semistability and semisimplicity in representations of low height in positive characteristic, A tribute to C. S. Seshadri (Chennai, 2002), Birkhäuser, Basel (Trends Math.) (2003), pp. 271-282 | MR 2017588 | Zbl 1067.20061
[12] Instability in invariant theory, Ann. of Math. (2), Tome 108 (1978) no. 2, pp. 299-316 | Article | MR 506989 | Zbl 0406.14031
[13] Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Princeton, NJ, Mathematical Notes, Tome 31 (1984) | MR 766741 | Zbl 0553.14020
[14] The action of the Frobenius maps on rank vector bundles in characteristic , J. Algebraic Geom., Tome 11 (2002) no. 2, pp. 219-243 | Article | MR 1874113 | Zbl 1080.14527
[15] Geometry of low height representations, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res., Bombay (Tata Inst. Fund. Res. Stud. Math.) Tome 16 (2002), pp. 417-426 | MR 1940675 | Zbl 1060.20039
[16] Representations of algebraic groups and principal bundles on algebraic varieties, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 629-635 | MR 1957070 | Zbl 1007.22020
[17] Semisimple Lie algebras, algebraic groups, and tensor categories (2007) (Milne’s home page)
[18] Fibration de Hitchin et endoscopie, Invent. Math., Tome 164 (2006) no. 2, pp. 399-453 | Article | MR 2218781 | Zbl 1098.14023
[19] The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci., Tome 91 (1982) no. 2, pp. 73-122 | Article | MR 682517 | Zbl 0586.14006
[20] Some remarks on the instability flag, Tohoku Math. J. (2), Tome 36 (1984) no. 2, pp. 269-291 | Article | MR 742599 | Zbl 0567.14027
[21] Stable principal bundles on a compact Riemann surface - Construction of moduli space, Bombay University (1976) (Ph. D. Thesis) | MR 369747
[22] Instabilité dans les fibrés vectoriels (d’après Bogomolov), Algebraic surfaces (Orsay, 1976–78), Springer, Berlin (Lecture Notes in Math.) Tome 868 (1981), pp. 277-292 | MR 638604 | Zbl 0477.14012
[23] Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., Tome 116 (1994) no. 1-3, pp. 513-530 | Article | MR 1253203 | Zbl 0816.20014
[24] Moursund Lectures (1998) (University of Oregon, Mathematics Department)
[25] Complète réductibilité, Astérisque (2005) no. 299, pp. 195-217 (Séminaire Bourbaki. Vol. 2003/2004, Exp. No. 932, viii) | Numdam | MR 2167207 | Zbl 1156.20313
[26] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 5-95 | Article | Numdam | MR 1179076 | Zbl 0814.32003
[27] Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, pp. 47-129 | Article | Numdam | MR 1307297 | Zbl 0891.14005