Galois Covers and the Hilbert-Grunwald Property
Annales de l'Institut Fourier, Volume 62 (2012) no. 3, pp. 989-1013.

Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a p-adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over . The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.

Notre résultat principal mêle plusieurs thèmes  : il contient une conclusion de type Grunwald-Wang, une version du théorème d’irréductibilité de Hilbert et une forme p-adique à la Harbater, mais avec bonne réduction, du problème inverse de Galois sous sa forme régulière (RIGP). Nous en déduisons un énoncé qui pose de nouvelles questions sur le RIGP sur . La stratégie générale est d’étudier et d’exploiter la bonne réduction de certains modèles tordus de revêtements et des espaces de modules associés.

DOI: 10.5802/aif.2714
Classification: 14H30, 11R32, 12F12, 12E25, 14Gxx, 14Dxx, 14H10
Keywords: Inverse Galois theory, Grunwald’s problem, Hilbert’s irreducibility theorem, algebraic covers, local and global fields, Hurwitz spaces
Mot clés : théorie inverse de Galois, problème de Grunwald, théorème d’irréductibilité de Hilbert, revêtements algébriques, corsp locaux, corps globaux, espaces de Hurwitz
Dèbes, Pierre 1; Ghazi, Nour 1

1 Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)
@article{AIF_2012__62_3_989_0,
     author = {D\`ebes, Pierre and Ghazi, Nour},
     title = {Galois {Covers} and  the {Hilbert-Grunwald} {Property}},
     journal = {Annales de l'Institut Fourier},
     pages = {989--1013},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {3},
     year = {2012},
     doi = {10.5802/aif.2714},
     zbl = {1255.14022},
     mrnumber = {3013814},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2714/}
}
TY  - JOUR
AU  - Dèbes, Pierre
AU  - Ghazi, Nour
TI  - Galois Covers and  the Hilbert-Grunwald Property
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 989
EP  - 1013
VL  - 62
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2714/
DO  - 10.5802/aif.2714
LA  - en
ID  - AIF_2012__62_3_989_0
ER  - 
%0 Journal Article
%A Dèbes, Pierre
%A Ghazi, Nour
%T Galois Covers and  the Hilbert-Grunwald Property
%J Annales de l'Institut Fourier
%D 2012
%P 989-1013
%V 62
%N 3
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2714/
%R 10.5802/aif.2714
%G en
%F AIF_2012__62_3_989_0
Dèbes, Pierre; Ghazi, Nour. Galois Covers and  the Hilbert-Grunwald Property. Annales de l'Institut Fourier, Volume 62 (2012) no. 3, pp. 989-1013. doi : 10.5802/aif.2714. http://archive.numdam.org/articles/10.5802/aif.2714/

[1] Artin, Michael; Grothendieck, Alexandre; Verdier, Jean.-Louis SGA 4 Théorie des Topos et Cohomologie Étale des Schémas, LNM, 269, 270, 305, Springer, 1973 | MR

[2] Beckmann, Sybilla On extensions of number fields obtained by specializing branched coverings, J. Reine Angew. Math., Volume 419 (1991), pp. 27-53 | EuDML | MR | Zbl

[3] Dèbes, Pierre Covers of P 1 over the p-adics, Recent developments in the Inverse Galois Problem (Contemporary Math.), Volume 186, Cambridge University Press, 1995, pp. 217-238 | MR | Zbl

[4] Dèbes, Pierre Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 28 (1999), pp. 273-286 | EuDML | Numdam | MR | Zbl

[5] Dèbes, Pierre Some arithmetic properties of algebraic covers, Aspects of Galois Theory (London Math. Soc. Lecture Note Series), Volume 256, Cambridge University Press, 1999, pp. 66-84 | MR | Zbl

[6] Dèbes, Pierre Théorème d’existence de Riemann, Arithmétique des revêtements algébriques (Séminaires et Congrès), Volume 5, SMF, 2001, pp. 27-41 | MR | Zbl

[7] Dèbes, Pierre Arithmétique des revêtements de la droite, Lecture Notes 2009/10, 2009 (http://math.univ-lille1.fr/~pde/ens.html)

[8] Dèbes, Pierre; Douai, Jean-Claude Algebraic covers: field of moduli versus field of definition, Annales Sci. E.N.S., Volume 30 (1997), pp. 303-338 | EuDML | Numdam | MR | Zbl

[9] Dèbes, Pierre; Douai, Jean-Claude; Moret-Bailly, Laurent Descent Varieties for Algebraic Covers, J. Reine Angew. Math., Volume 574 (2004), pp. 51-78 | DOI | MR | Zbl

[10] Dèbes, Pierre; Emsalem, Michel Harbater-Mumford Components and Hurwitz Towers, J. Math. Inst. Jussieu, Volume 5 (2006) no. 3, pp. 351-371 | DOI | MR

[11] Dèbes, Pierre; Ghazi, Nour Specializations of Galois Covers of the line, Alexandru Myller Mathematical Seminar, Proceedings of the Centennial Conference (American Institute of Physics), Volume 1329, V. Barbu and O. Carja, Eds, 2011, pp. 98-108 | MR

[12] Dèbes, Pierre; Walkowiak, Yann Bounds for Hilbert’s Irreducibility Theorem, Pure & Applied Math. Quarterly, Volume 4/4 (2008), pp. 1059-1083 | MR

[13] Deligne, Pierre La conjecture de Weil I, Publ. Math. IHES, Volume 43 (1974), pp. 273-308 | Numdam | MR | Zbl

[14] Deligne, Pierre La conjecture de Weil II, Publ. Math. IHES, Volume 52 (1980), pp. 137-252 | Numdam | MR | Zbl

[15] Deschamps, Bruno Existence de points p-adiques pour tout p sur un espace de Hurwitz, Recent developments in the Inverse Galois Problem (Contemporary Math.), Volume 186, Cambridge University Press, 1995, pp. 239-247 | MR | Zbl

[16] Eichler, Martin Zum Hilbertschen Irreduzibilittssatz, Math. Ann., Volume 116 (1939), pp. 742-748 | DOI | MR | Zbl

[17] Ekedahl, Torsten An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988/1989 (Progress in Mathematics), Volume 91, Birkhäuser, 1990, pp. 241-248 | MR | Zbl

[18] Fried, Michael D. On Hilbert’s irreducibility theorem, J. Number Theory, Volume 6 (1974), pp. 211-231 | DOI | MR | Zbl

[19] Fried, Michael D. Introduction to modular towers: generalizing dihedral group–modular curve connections, Recent developments in the inverse Galois problem (Contemp. Math.), Volume 186, Amer. Math. Soc., Providence, RI, 1995, pp. 111-171 | MR | Zbl

[20] Fried, Michael D.; Völklein, Helmut The inverse Galois problem and rational points on moduli spaces, Math. Ann., Volume 290 (1991) no. 4, pp. 771-800 | DOI | MR | Zbl

[21] Fulton, William Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), Volume 90 (1969), pp. 542-575 | DOI | MR | Zbl

[22] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967) no. 32, pp. 361 | Numdam | MR | Zbl

[23] Grothendieck, Alexandre Revêtements étales et groupe fondamental, LNM, 224, Springer, 1971 | MR

[24] Grothendieck, Alexandre SGA 5 Cohomologie -adique et Fonctions L , LNM, 589, Springer-Verlag, 1973 | MR

[25] Grothendieck, Alexandre; Murre, Jacob P. The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, LNM, 208, Springer, 1971 | MR | Zbl

[26] Harbater, David Galois coverings of the arithmetic line, Lecture Notes in Math., Volume 1240 (1987), pp. 165-195 | DOI | MR | Zbl

[27] Jordan, Camille Recherches sur les substitutions, J. Liouville, Volume 17 (1872), pp. 351-367

[28] Lagarias, J. C.; Montgomery, H. L.; Odlyzko, A. M. A Bound for the Least Prime Ideal in the Chebotarev Density Theorem, Invent. Math., Volume 54 (1979), pp. 271-296 | DOI | MR | Zbl

[29] Lagarias, J. C.; Odlyzko, A. M. Effective versions of the Chebotarev Density Theorem, Algebraic Number Fields ((A. Fröhlich edit.), Academic Press, New-York, 1977, pp. 409-464 | MR | Zbl

[30] Milne, James S. Etale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl

[31] Moret-Bailly, Laurent Groupes de Picard et problèmes de Skolem II, Annales Sci. E.N.S., Volume 22 (1989), pp. 181-194 | Numdam | MR | Zbl

[32] Moret-Bailly, Laurent Problèmes de Skolem sur les champs algébriques, Comp. Math., Volume 125 (2001), pp. 1-30 | DOI | MR

[33] Neukirch, Jürgen On solvable number fields, Invent. Math., Volume 53 (1979) no. 2, pp. 135-164 | DOI | MR | Zbl

[34] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2008 | MR

[35] Plans, Bernat; Vila, Nuria Galois covers of P 1 over Q with prescribed local or global behavior by specialization, J. Théorie des Nombres Bordeaux, Volume 17 (2005), pp. 271-282 | DOI | Numdam | MR

[36] Pop, Florian Embedding problems over large fields, Annals of Math., Volume 144 (1996), pp. 1-35 | DOI | MR | Zbl

[37] Saltmann, David J. Generic Galois extensions and Problems in Field Theory, Advances in Math., Volume 43 (1982), pp. 250-283 | DOI | MR | Zbl

[38] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev, Pub. Math. I.H.E.S., Volume 54 (1981), pp. 323-401 | Numdam | MR | Zbl

[39] Serre, Jean-Pierre Topics in Galois Theory, Research Notes in Mathematics, Jones and Bartlett Publishers, 1992 | MR | Zbl

[40] Wewers, Stefan Construction of Hurwitz spaces, Essen (1998) (Ph. D. Thesis) | Zbl

Cited by Sources: