Integral models for moduli spaces of G-torsors  [ Modèles integraux des espaces de modules de G-torseurs ]
Annales de l'Institut Fourier, Tome 62 (2012) no. 4, p. 1483-1549
Étant donné un schéma en groupes fini modéré, nous construisons des espaces de modules de G-torseurs sur des variétés algébriques, en utilisant une version en grande dimension de la théorie des morphismes stables tordus dans les champs classifiants.
Given a finite tame group scheme G, we construct compactifications of moduli spaces of G-torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.
DOI : https://doi.org/10.5802/aif.2728
Classification:  14J15,  14D06,  14D20
Mots clés:  ? ? ?
@article{AIF_2012__62_4_1483_0,
     author = {Olsson, Martin},
     title = {Integral models for moduli spaces of $G$-torsors},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {4},
     year = {2012},
     pages = {1483-1549},
     doi = {10.5802/aif.2728},
     mrnumber = {3025749},
     zbl = {pre06101193},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_2012__62_4_1483_0}
}
Olsson, Martin. Integral models for moduli spaces of $G$-torsors. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1483-1549. doi : 10.5802/aif.2728. http://www.numdam.org/item/AIF_2012__62_4_1483_0/

[1] Abramovich, D.; Olsson, M.; Vistoli, A. Tame stacks in positive characteristic, Annales de l’Institut Fourier, Tome 57 (2008), pp. 1057-1091 | Article | Numdam | MR 2427954 | Zbl 1222.14004

[2] Abramovich, D.; Olsson, M.; Vistoli, A. Twisted stable maps to tame Artin stacks (to appear in J. Alg. Geometry) | MR 2786662 | Zbl 1225.14020

[3] Abramovich, D.; Vistoli, A. Compactifying the space of stable maps, J. Amer. Math. Soc., Tome 15 (2002), pp. 27-75 | Article | MR 1862797 | Zbl 0991.14007

[4] Artin, M. Algebraic approximation of structures over complete local rings, Publications Mathématiques de l’IHÉS, Tome 36 (1969), pp. 23-58 | Article | Numdam | MR 268188 | Zbl 0181.48802

[5] Artin, M. Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo (1969), pp. 21-71 | MR 260746 | Zbl 0205.50402

[6] Artin, M.; Grothendieck, A.; Verdier, J.-L. Théorie des topos et cohomologie étale des schémas, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 269, 270, 305 (1972)

[7] Borne, N.; Vistoli, A. Parabolic sheaves on logarithmic schemes, preprint (2010)

[8] Cadman, C. Using stacks to impose tangency conditions on curves, American J. of Math., Tome 129 (2007), pp. 405-427 | Article | MR 2306040 | Zbl 1127.14002

[9] Deligne, P. Théorie de Hodge: II, Inst. Hautes Études Sci. Publ. Math., Tome 40 (1971), pp. 5-57 | Article | Numdam | MR 498551 | Zbl 0219.14007

[10] Deligne, P. Cohomologie étale, Séminaire de Géométrie Algébrique 4 1/2, Springer (Lecture Notes in Math) Tome 569 (1977) | MR 463174 | Zbl 0349.14008

[11] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math., Tome 36 (1969), pp. 75-109 | Article | Numdam | MR 262240 | Zbl 0181.48803

[12] Dieudonné, J.; Grothendieck, A. Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Tome 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967) | Numdam | Zbl 0153.22301

[13] Friedman, R. Global smoothings of varieties with normal crossings, Ann. of Math., Tome 118 (1983), pp. 75-114 | Article | MR 707162 | Zbl 0569.14002

[14] Grothendieck, A. Revêtements étales et groupe fondamental, Springer, Lectures Notes in Math, Tome 224 (1971) | MR 354651

[15] Kato, F. Log smooth deformation theory, Tohoku Math. J., Tome 48 (1996), pp. 317-354 | Article | MR 1404507 | Zbl 0876.14007

[16] Kato, K. Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, (Baltimore, MD, 1988) (1989), pp. 191-224 | MR 1463703 | Zbl 0776.14004

[17] Matsuki, K.; Olsson, M. Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Letters, Tome 12 (2005), pp. 207-217 | MR 2150877 | Zbl 1080.14023

[18] Ogus, A. Logarithmic geometry and algebraic stacks, book in preparation (2008)

[19] Olsson, M. Logarithmic geometry and algebraic stacks, Ann. Sci. d’ENS, Tome 36 (2003), pp. 747-791 | Numdam | MR 2032986 | Zbl 1069.14022

[20] Olsson, M. Universal log structures on semi-stable varieties, Tohoku Math. J., Tome 55 (2003), pp. 397-438 | Article | MR 1993863 | Zbl 1069.14015

[21] Olsson, M. On proper coverings of Artin stacks, Adv. Math., Tome 198 (2005), pp. 93-106 | Article | MR 2183251 | Zbl 1084.14004

[22] Olsson, M. On (log) twisted curves, Comp. Math., Tome 143 (2007), pp. 476-494 | MR 2309994 | Zbl 1138.14017