On semisimple classes and semisimple characters in finite reductive groups  [ Sur les classes de conjugaison semi-simples et les caractères semi-simples des groupes réductifs finis ]
Annales de l'Institut Fourier, Tome 62 (2012) no. 5, p. 1671-1716
Dans cet article, on étudie les éléments de centralisateur non connexe du complexe de Brauer associé à un groupe algébrique simple G défini sur un corps fini. On déduit alors, lorsque le groupe fondamental est d’ordre premier, le nombre de classes de conjugaison semi-simples rationnelles de G dont les représentants ont un centralisateur non connexe. On étudie également l’extensibilité des caractères semisimples du groupe des points fixes G F à leur groupe d’inertie dans le groupe des automorphismes de G F , où F est l’endomorphisme de Frobenius de G relatif à la structure rationnelle. Comme conséquence, on montre qu’un groupe fini simple de type E 6 vérifie la condition inductive de McKay en caractéristique naturelle. Ce travail s’inscrit dans le programme général initialisé par Isaacs, Malle et Navarro pour prouver la conjecture de McKay en théorie des représentations des groupes finis.
In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group G defined over a finite field with corresponding Frobenius map F and derive the number of F-stable semisimple classes of G with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup G F to their inertia group in the full automorphism group. As a consequence, we prove that “twisted” and “untwisted” simple groups of type E 6 are “good” in defining characteristic, which is a contribution to the general program initialized by Isaacs, Malle and Navarro to prove the McKay Conjecture in representation theory of finite groups.
DOI : https://doi.org/10.5802/aif.2733
Classification:  20C33,  20G40,  20E45
Mots clés: groupes algébriques, classes semi-simples, complexe de Brauer, caractères semi-simples, groupes réductifs finis, centralisateurs non connexes, condition inductive de McKay.
@article{AIF_2012__62_5_1671_0,
     author = {Brunat, Olivier},
     title = {On semisimple classes and semisimple characters in finite reductive groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {5},
     year = {2012},
     pages = {1671-1716},
     doi = {10.5802/aif.2733},
     mrnumber = {3025151},
     zbl = {1276.20009},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_2012__62_5_1671_0}
}
Brunat, Olivier. On semisimple classes and semisimple characters in finite reductive groups. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1671-1716. doi : 10.5802/aif.2733. http://www.numdam.org/item/AIF_2012__62_5_1671_0/

[1] Bonnafé, C. Éléments unipotents réguliers des sous-groupes de Levi, Canad. J. Math., Tome 56 (2004) no. 2, pp. 246-276 | Article | MR 2040915 | Zbl 1080.20037

[2] Bonnafé, Cédric Quasi-isolated elements in reductive groups, Comm. Algebra, Tome 33 (2005) no. 7, pp. 2315-2337 | Article | MR 2153225 | Zbl 1096.20037

[3] Bonnafé, Cédric Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque (2006) no. 306, pp. vi+165 | MR 2274998 | Zbl 1157.20022

[4] Bourbaki, N. Lie groups and Lie algebras. Chapters 4–6, Springer-Verlag, Berlin, Elements of Mathematics (Berlin) (2002) (Translated from the 1968 French original by Andrew Pressley) | MR 1890629 | Zbl 0672.22001

[5] Brunat, O.; Himstedt, F. On equivariant bijections relative to the defining characteristic, J. Algebra, Tome 334 (2011) no. 1, pp. 150-174 | Article | MR 2787657 | Zbl pre05990149

[6] Brunat, Olivier On the inductive McKay condition in the defining characteristic, Math. Z., Tome 263 (2009) no. 2, pp. 411-424 | Article | MR 2534124 | Zbl 1186.20014

[7] Brunat, Olivier Counting p -characters in finite reductive groups, J. Lond. Math. Soc. (2), Tome 81 (2010) no. 3, pp. 544-562 | Article | MR 2650783 | Zbl pre05717773

[8] Carter, R.W. Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney (1972) (Pure and Applied Mathematics, Vol. 28) | MR 407163 | Zbl 0723.20006

[9] Carter, R.W. Finite groups of Lie type, John Wiley & Sons Inc., New York, Pure and Applied Mathematics (New York) (1985) (Conjugacy classes and complex characters, A Wiley-Interscience Publication) | MR 794307 | Zbl 0567.20023

[10] Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. of Math. (2), Tome 103 (1976) no. 1, pp. 103-161 | Article | MR 393266 | Zbl 0336.20029

[11] Deriziotis, D. I. The Brauer complex of a Chevalley group, J. Algebra, Tome 70 (1981) no. 1, pp. 261-269 | Article | MR 618393 | Zbl 0475.20034

[12] Digne, F.; Lehrer, G. I.; Michel, J. The characters of the group of rational points of a reductive group with non-connected centre, J. Reine Angew. Math., Tome 425 (1992), pp. 155-192 | MR 1151318 | Zbl 0739.20018

[13] Digne, F.; Lehrer, G. I.; Michel, J. On Gel fand-Graev characters of reductive groups with disconnected centre, J. Reine Angew. Math., Tome 491 (1997), pp. 131-147 | MR 1476090 | Zbl 0880.20033

[14] Digne, F.; Michel, J. Representations of finite groups of Lie type, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, Tome 21 (1991) | MR 1118841 | Zbl 0815.20014

[15] Digne, F.; Michel, J. Groupes réductifs non connexes, Ann. Sci. École Norm. Sup. (4), Tome 27 (1994) no. 3, pp. 345-406 | Numdam | MR 1272294 | Zbl 0846.20040

[16] Digne, François; Michel, Jean Points fixes des automorphismes quasi-semi-simples, C. R. Math. Acad. Sci. Paris, Tome 334 (2002) no. 12, pp. 1055-1060 | Article | MR 1911646 | Zbl 1001.20043

[17] Gorenstein, D.; Lyons, R.; Solomon, R. The classification of the finite simple groups, Number 3, American Mathematical Society, Cambridge, Mathematical Surveys and Monographs, Tome 40 (1991) | MR 1303592 | Zbl 0816.20016

[18] Humphreys, James E. Ordinary and modular representations of Chevalley groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 528 (1976) | MR 453884 | Zbl 0341.20037

[19] Isaacs, I.M. Character theory of finite groups, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976) (Pure and Applied Mathematics, No. 69) | MR 460423 | Zbl 0337.20005

[20] Isaacs, I.M.; Malle, G.; Navarro, G. A reduction theorem for McKay conjecture, Invent. Math., Tome 170 (2007), pp. 33-101 | Article | MR 2336079 | Zbl 1138.20010

[21] Malle, Gunter Generalized Deligne-Lusztig characters, J. Algebra, Tome 159 (1993) no. 1, pp. 64-97 | Article | MR 1231204 | Zbl 0812.20024

[22] Maslowski, J. Equivariant character bijections in groups of Lie type, TU Kaiserslautern, Dissertation (2010)

[23] Sorlin, Karine Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes, Bull. Soc. Math. France, Tome 132 (2004) no. 2, pp. 157-199 | Numdam | MR 2075565 | Zbl 1059.20017

[24] Späth, B. Inductive McKay condition in defining characteristic, preprint

[25] Springer, T. A. Linear algebraic groups, Birkhäuser Boston Inc., Boston, MA, Modern Birkhäuser Classics (2009) | MR 2458469 | Zbl 1202.20048