The Hilbert Scheme of Buchsbaum space curves
[Le schéma de Hilbert des courbes gauches de Buchsbaum]
Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2099-2130.

Nous considérons le schéma de Hilbert H(d,g) des courbes C dont l’idéal homogène est I(C):=H * 0 ( C ) et le module de Rao M:=H * 1 ( C ). En prenant des générisations (déformations) convenables C de C on simplifie la résolution minimale libre de I(C). Par exemple, certains facteurs libres consécutifs vont disparaître dans une résolution libre de I(C ). En appliquant ceci à des courbes de Buchsbaum de diamètre 1 (M v 0 seulement pour une valeur de v), nous donnons une correspondance biunivoque entre l’ensemble 𝒮 des composantes irréductibles de H(d,g) qui contiennent (C) et un ensemble des quintuplets minimaux, qui se spécialise à un quintuple de nombres de Betti gradués de C. De plus nous déterminons presque complétement les nombres de Betti gradués de toutes les générisations de C, et nous donnons une description du lieu singulier du schéma de Hilbert des courbes de diamètre au plus égal à 1. Nous démontrons aussi des résultats de sémi-continuité pour les nombres de Betti gradués des courbes.

We consider the Hilbert scheme H(d,g) of space curves C with homogeneous ideal I(C):=H * 0 ( C ) and Rao module M:=H * 1 ( C ). By taking suitable generizations (deformations to a more general curve) C of C, we simplify the minimal free resolution of I(C) by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of I(C ). Using this for Buchsbaum curves of diameter one (M v 0 for only one v), we establish a one-to-one correspondence between the set 𝒮 of irreducible components of H(d,g) that contain (C) and a set of minimal 5-tuples that specializes in an explicit manner to a 5-tuple of certain graded Betti numbers of C related to ghost-terms. Moreover we almost completely (resp. completely) determine the graded Betti numbers of all generizations of C (resp. all generic curves of 𝒮), and we give a specific description of the singular locus of the Hilbert scheme of curves of diameter at most one. We also prove some semi-continuity results for the graded Betti numbers of any space curve under some assumptions.

DOI : https://doi.org/10.5802/aif.2744
Classification : 14C05,  14H50,  14M06,  13D02,  13C40
Mots clés : schéma de Hilbert, courbe, courbe de Buchsbaum, nombre de Betti gradué.
@article{AIF_2012__62_6_2099_0,
     author = {Kleppe, Jan O.},
     title = {The Hilbert Scheme of Buchsbaum space curves},
     journal = {Annales de l'Institut Fourier},
     pages = {2099--2130},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {6},
     year = {2012},
     doi = {10.5802/aif.2744},
     mrnumber = {3060753},
     zbl = {1271.14007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2744/}
}
Kleppe, Jan O. The Hilbert Scheme of Buchsbaum space curves. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2099-2130. doi : 10.5802/aif.2744. http://archive.numdam.org/articles/10.5802/aif.2744/

[1] Amasaki, M. Examples of Nonsingular Irreducible Curves Which Give Reducible Singular Points of red(H d,g ), Publ. RIMS, Kyoto Univ., Volume 21 (1985), pp. 761-786 | MR 817163 | Zbl 0609.14002

[2] Bolondi, G. Irreducible families of curves with fixed cohomology, Arch. der Math., Volume 53 (1989), pp. 300-305 | MR 1006724 | Zbl 0658.14005

[3] Bolondi, G.; Kleppe, J.O.; Miro-Roig, R.M. Maximal rank curves and singular points of the Hilbert scheme, Compositio Math., Volume 77 (1991), pp. 269-291 | Numdam | MR 1092770 | Zbl 0724.14018

[4] Bolondi, G.; Migliore, J. Classification of Maximal Rank Curves in the Liaison Class L n , Math. Ann., Volume 277 (1987), pp. 585-603 | MR 901706 | Zbl 0607.14015

[5] Bolondi, G.; Migliore, J. The Lazarsfeld-Rao property on an arithmetically Gorenstein variety, Manuscripta Math., Volume 78 (1993) no. 4, pp. 347-368 | MR 1208646 | Zbl 0813.14035

[6] Boratyński, M.; Greco, S. Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. (4), Volume 142 (1985), pp. 277-292 | MR 839041 | Zbl 0591.14007

[7] Chang, M-C. A Filtered Bertini-type Theorem, J. reine angew. Math., Volume 397 (1989), pp. 214-219 | MR 993224 | Zbl 0663.14008

[8] Eisenbud, D. Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, New York, 1995 | MR 1322960 | Zbl 0819.13001

[9] Ellia, Ph.; Fiorentini, M. Défaut de postulation et singularités du Schéma de Hilbert, Annali Univ. di Ferrara, Volume 30 (1984), pp. 185-198 | MR 796926 | Zbl 0577.14019

[10] Ellia, Ph.; Hirschowitz, A.; Mezzetti, E. On the number of irreducible components of the Hilbert scheme of smooth space curves, International J. of Math., Volume 3 (1992) no. 6, pp. 799-807 | MR 1194072 | Zbl 0824.14024

[11] Ellingsrud, G. Sur le schéma de Hilbert des variétés de codimension 2 dans e à cône de Cohen-Macaulay, Ann. Scient. Éc. Norm. Sup., Volume 8 (1975), pp. 423-432 | Numdam | MR 393020 | Zbl 0325.14002

[12] Ginouillac, S. Sur le nombre de composant du schéma de Hilbert des courbes ACM de k 3 , C. R. Acad. Sci. Paris Sér. I, Math., Volume 329 (1999), pp. 857-862 | MR 1727997 | Zbl 0961.14002

[13] Grothendieck, A. Les schémas de Hilbert, Séminaire Bourbaki, exp. 221, 1960

[14] Gruson, L.; Peskine, Chr. Genre des courbes de l’espace projectif, Proc. Tromsø 1977 (Lectures Notes in Math.), Volume 687, Springer-Verlag, New York, 1978 | MR 527229 | Zbl 0412.14011

[15] Guffroy, S. Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps, Nagoya Math. J., Volume 171 (2003), pp. 51-83 | MR 2002013 | Zbl 1085.14501

[16] Hartshorne, R. Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, 1983 | MR 360574 | Zbl 0531.14001

[17] Iarrobino, A. Betti strata of height two ideals, J. Algebra, Volume 285 (2005), pp. 835-855 | MR 2125467 | Zbl 1095.13014

[18] Kleppe, J. O. Deformations of graded algebras, Math. Scand., Volume 45 (1979), pp. 205-231 | MR 580600 | Zbl 0436.14004

[19] Kleppe, J. O. Liaison of families of subschemes in n , Algebraic Curves and Projective Geometry, Proceedings (Trento, 1988) (Lectures Notes in Math.), Volume 1389, Springer-Verlag, New York, 1989 | MR 1023396 | Zbl 0697.14003

[20] Kleppe, J. O. The Hilbert Scheme of Space Curves of small diameter, Annales de l’institut Fourier, Volume 56 (2006) no. 5, pp. 1297-1335 | Numdam | MR 2273858 | Zbl 1117.14006

[21] Kleppe, J. O. Families of Artinian and one-dimensional algebras, J. Algebra, Volume 311 (2007), pp. 665-701 | MR 2314729 | Zbl 1129.14009

[22] Laudal, A. Formal Moduli of Algebraic Structures, Lectures Notes in Math., 754, Springer-Verlag, New York, 1979 | MR 551624 | Zbl 0438.14007

[23] Martin-Deschamps, M.; Perrin, D. Sur la classification des courbes gauches, Asterisque, 184-185, 1990 | MR 1073438 | Zbl 0717.14017

[24] Martin-Deschamps, M.; Perrin, D. Courbes Gauches et Modules de Rao, J. reine angew. Math., Volume 439 (1993), pp. 103-145 | MR 1219697 | Zbl 0765.14017

[25] Migliore, J. Introduction to liaison theory and deficiency modules, Progress in Math., 165, Birkhäuser Boston, Inc., Boston, MA, 1998 | MR 1712469 | Zbl 0921.14033

[26] Peeva, I. Consecutive cancellations in Betti Numbers, Proc. Amer. Math. Soc., Volume 132 (2004) no. 12, pp. 3503-3507 | MR 2084070 | Zbl 1099.13505

[27] Peskine, Ch.; Szpiro, L. Liaison des variétés algébrique, Invent. Math., Volume 26 (1974), pp. 271-302 | MR 364271 | Zbl 0298.14022

[28] Piene, R.; Schlessinger, M. On the Hilbert scheme compactification of the space of twisted cubics, Amer. J. Math., Volume 107 (1985), pp. 761-774 | MR 796901 | Zbl 0589.14009

[29] Ragusa, A.; Zappalá, G. On the reducibility of the postulation Hilbert scheme, Rend. Circ. Mat. Palermo, Serie II (2004) no. LIII, pp. 401-406 | MR 2165191 | Zbl 1099.13029

[30] Rao, A. P. Liaison Among Curves, Invent. Math., Volume 50 (1979), pp. 205-217 | MR 520926 | Zbl 0406.14033

[31] Sernesi, E. Un esempio di curva ostruita in 3 (1981), pp. 223-231

[32] Walter, C. Some examples of obstructed curves in 3 , Complex Projective Geometry (London Math. Soc. Lecture Note Ser.), Volume 179, 1992 | MR 1201393 | Zbl 0787.14021

[33] Walter, C. Transversality Theorems in General Characteristic with Applications to Arithmetically Buchsbaum Schemes, Internat. J. Math., Volume 5 (1994), pp. 609-617 | MR 1284572 | Zbl 0828.14031

[34] Weibel, C. A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994 | MR 1269324 | Zbl 0797.18001