The local integration of Leibniz algebras
Annales de l'Institut Fourier, Volume 63 (2013) no. 1, p. 1-35

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article ends with an example of a Leibniz algebra integration in dimension 5.

Cet article apporte une solution locale au problème des coquecigrues pour les algèbres de Leibniz. Ce problème consiste à trouver une généralisation de la structure de groupe (de Lie) dont les algèbres de Leibniz sont les structures tangentes associées. En utilisant les liens entre cohomologie d’algèbre de Leibniz et cohomologie de rack de Lie, nous généralisons l’intégration d’une algèbre de Lie en un groupe de Lie en prouvant que toute algèbre de Leibniz est isomorphe à l’algèbre de Leibniz tangente d’un rack de Lie local. Cet article se termine avec l’exemple de l’intégration d’une algèbre de Leibniz de dimension 5.

DOI : https://doi.org/10.5802/aif.2754
Classification:  17A32,  20M99
Keywords: Leibniz algebra, Lie rack, Leibniz algebra cohomology, rack cohomology.
@article{AIF_2013__63_1_1_0,
     author = {Covez, Simon},
     title = {The local integration of Leibniz algebras},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {1},
     year = {2013},
     pages = {1-35},
     doi = {10.5802/aif.2754},
     mrnumber = {3089194},
     zbl = {06177075},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2013__63_1_1_0}
}
Covez, Simon. The local integration of Leibniz algebras. Annales de l'Institut Fourier, Volume 63 (2013) no. 1, pp. 1-35. doi : 10.5802/aif.2754. http://www.numdam.org/item/AIF_2013__63_1_1_0/

[1] Andruskiewitsch, Nicolás; Graña, Matías From racks to pointed Hopf algebras, Adv. Math., Tome 178 (2003) no. 2, pp. 177-243 | Article | MR 1994219 | Zbl 1032.16028

[2] Cartan, E. Le troisième théorème fondamental de Lie, C.R. Acad. Sc. T., Tome 190 (1930), pp. 914-1005 | JFM 56.0373.01

[3] Covez, S. L’intégration locale des algèbres de Leibniz (2010) (PhD thesis. Available at http://tel.archives-ouvertes.fr/tel-00495469/)

[4] Van Est, W. T. A group theoretic interpretation of area in the elementary geometries., Simon Stevin, Tome 32 (1958), pp. 29-38 | MR 97764 | Zbl 0139.14406

[5] Van Est, W. T. Local and global groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., Tome 24 (1962), pp. 391-408 | MR 144999 | Zbl 0105.02405

[6] Van Est, W. T. Local and global groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., Tome 24 (1962), pp. 409-425 | MR 145000 | Zbl 0109.02003

[7] Fenn, Roger; Rourke, Colin Racks and links in codimension two, J. Knot Theory Ramifications, Tome 1 (1992) no. 4, pp. 343-406 | Article | MR 1194995 | Zbl 0787.57003

[8] Jackson, Nicholas Extensions of racks and quandles, Homology Homotopy Appl., Tome 7 (2005) no. 1, pp. 151-167 http://projecteuclid.org/getRecord?id=euclid.hha/1139839510 | MR 2155522 | Zbl 1077.18010

[9] Kinyon, Michael K. Leibniz algebras, Lie racks, and digroups, J. Lie Theory, Tome 17 (2007) no. 1, pp. 99-114 | MR 2286884 | Zbl 1129.17002

[10] Loday, J. L.; Pirashvili, T. The tensor category of linear maps and Leibniz algebras, Georgian Math. J., Tome 5 (1998) no. 3, pp. 263-276 | Article | MR 1618360 | Zbl 0909.18003

[11] Loday, Jean-Louis Une version non commutative des algèbres de Lie: les algèbres de Leibniz, R.C.P. 25, Vol. 44 (French) (Strasbourg, 1992), Univ. Louis Pasteur, Strasbourg (Prépubl. Inst. Rech. Math. Av.) Tome 1993/41 (1993), pp. 127-151 | MR 1331623 | Zbl 0806.55009

[12] Loday, Jean-Louis Cyclic homology, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 301 (1998) (Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili) | MR 1600246 | Zbl 0780.18009

[13] Loday, Jean-Louis; Pirashvili, Teimuraz Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., Tome 296 (1993) no. 1, pp. 139-158 | Article | MR 1213376 | Zbl 0821.17022

[14] Neeb, Karl-Hermann Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble), Tome 52 (2002) no. 5, pp. 1365-1442 http://aif.cedram.org/item?id=AIF_2002__52_5_1365_0 | Article | Numdam | MR 1935553 | Zbl 1019.22012

[15] Neeb, Karl-Hermann Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV, Univ. Luxemb., Luxembourg (Trav. Math., XV) (2004), pp. 69-194 | MR 2143422 | Zbl 1079.22018

[16] Smith, P. A. The complex of a group relative to a set of generators. II, Ann. of Math. (2), Tome 54 (1951), pp. 403-424 | Article | MR 48462 | Zbl 0044.19804

[17] Smith, P. A. Some topological notions connected with a set of generators, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I. (1952), pp. 436-441 | MR 48463 | Zbl 0049.12503